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A B S T R A C T

Various research efforts would benefit from the ability to exchange and share information

(traces with packet payloads, or other detailed system logs) to enable more data-driven

research. Protection of the sensitive content is crucial for extensive information sharing.

We present results of Kencl and Loebl (2009) [41] and Blamey et al. (in preparation) [4]

about a technique of information concealing, based on introduction and maintenance of

families of repeats. The structure of repeats in DNA constitutes an important obstacle for

its reconstruction by hybridisation. A large proportion of eukaryotic genomes is composed

of DNA segments that are repeated either precisely or in variant form more than once.

As yet, no function has been associated with many of the repeats. In the paper by

Blamey et al. (in preparation) [4], the authors propose that in eukaryotes the cells have

DNA as a depositary of concealed genetic information and the genome achieves the self-

concealing by accumulation and maintenance of repeats. The protected information may

be shared and this is useful for the development of intercellular communication and in the

development of multicellular organisms. The results presented here are protected by Czech

patent number 301 799 and by US Patent Application number 12/670.
c⃝ 2010 Elsevier Inc. All rights reserved.
d

1. Introduction

Contemporary computer systems may be distributed and
may consist of many interconnected processing units or
a large number of networked computer subsystems. In
addition contemporary digital networks may consist of a
large number of end- and intermediate-nodes. In all these
systems, information, in the form of the sequences over
some alphabet of symbols, is circulating or being stored.
The entity controlling a subsystem or a node is often
unwilling or prohibited to share these information-sequences
with other nodes. However, sharing of some reduced local
information might be very useful for purposes of security,
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stability and various analyses of the system performance,
and for data mining. Such analysis might for example
allow the identification of frequently appearing segments
by performing approximate statistical analysis on segment
frequency, allowing the detection of replicating malicious
code-worms. It also allows the identification of segment-
markers of computer viral infection, by detecting patterns
existing in some database of malicious sequences. Such
databases are used e.g. in contemporary intrusion detection
systems or spam filters. It has been shown that being able to
perform pattern matching against only fixed-length prefixes
or substrings of longer sequences can provide approximate
hints as to the presence of suspicious content [1]. Likewise,
established worm detection techniques such as Autograph [2]
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or EarlyBird [3] are based on counting frequency of small
blocks of a fixed size.

Sharing of reduced local information among the members
of an interconnected computer system or communication
network thus helps to discover attacks earlier. Affected parts
may be isolated and further attack spread prevented. The
benefits of sharing local information may be reaped in case of
existence of a computational information processing, which
preserves local information (e.g. all segments of certain
maximal length) and makes it impossible to reconstruct
longer or sensitive parts of the information sequences.

We call such information processing concealing. The
systems which conceal information and share the concealed
information are likely to possess a competitive advantage in
the form of robustness, attack resistance and immunity due
to the ability to exchange, publish and protect information.
Clearly, any information concealing algorithm needs to
address two conflicting goals:

(1) preserving presence and, possibly, frequency rank of
segments of given size (making spam identification and
worm detection still possible), while

(2) making reconstruction of content longer than the
predefined limit computationally hard (e.g. disabling
interpretation or understanding of the private content).

The main contribution of this paper is formulation of
the information concealing problem and presentation of an
information concealing algorithm. The algorithm is based on
a principle which we learned in DNA reconstruction. As far
as we know this is the first use of this principle outside of
nature. The main feature of the method is that the concealed
sequence ωF (the output of the algorithm), which contains the
local information from the input sequence ω, gives rise to a
set S, |S| exponential, of feasible reconstructions of ω. Anyone
attempting to reconstruct the original sequence must choose
it correctly from S. This is very hard since the elements of
S are indistinguishable from the information contained in
ωF, even when knowing the concealing algorithm itself. We
analyse the algorithm and under the consistency assumption
present evidence of the hardness of reconstruction of the
input sequence. However, we have not been able to study the
problem from the information-theoretic or entropy point of
view yet and this remains open to further investigation.

We also want to stress that even though our algorithm is
inspired by the repeats in DNA, the output of the algorithm,
aside of containing repeats, has no other similarities to the
DNA structure as far as we know. The article is organized
as follows: in Section 2 we survey the reasons for proposing
in [4], along with Jenny Blamey, the conjecture that in
eukaryotes the cells have DNA as a depositary of concealed
genetic information and the genome achieves the self-
concealing by accumulation and maintenance of repeats. In
Section 3 we give an overview of related problem areas in
the field of information and communication technologies and
comment on how they differ from the concealing problem.
In Section 4 we pose the concealing problem formally and
in Sections 5 and 6 we describe the concealing algorithm
and its sub-procedures. In Sections 7 and 8 we analyze the
properties of the presented algorithm and prove the hardness
of reconstruction, and we conclude in Section 9.
2. Repeats in DNA

2.1. Basic structure of DNA

A eukaryotic gene is a unit of DNA segments which facilitates
a specific functional gene product that may be either RNA
molecules or polypeptides. The segments of a gene include
the transcription region (TR) and a large variety of regulatory
sequences that flank it. The TR encompasses the coding
segments (exons), the intervening segments (introns) and
regulatory segments. The TR is copied by a process called
transcription into the precursor RNA. The transcribed introns
are then removed by a process called splicing. The transcribed
exons are joined correctly together during the splicing,
and they are transformed into the final specific functional
product. Introns vary in size, but the same genes in different
species often have the same number of introns at analogous
positions, although the length and their sequences differ. The
function of the introns has not yet been fully understood.

Economy seems to be less important during the evolution
of eukaryotes. Apart from the large part of DNA consumed
by introns, eukaryotic genes are separated by long stretches
of noncoding DNA sequences. The most striking example
is various repeat families. Their existence is a basic feature
of eukaryotic DNA. Prokaryotes also contain repeats, but
only upto 0.5%. This is in contrast to as much as 50% of
repeats for eukaryotes. Telomeric and centromeric regions
of chromosomes contain tandemly repeated nucleotide
sequences called microsatellites. Aside of tandem repetitions
other highly repeated sequences interrupt DNA sequences.
The members of these interspread repeat families are found
between genes, in introns, within satellite DNA, and even
within coding and regulatory regions where they cause
mutation. Apart of the repeat families, other examples of
non-coding DNA include the intergenic spaces segments (IGS)
that separate clusters of ribosomal DNA (rDNA), and the
pseudogenes. Pseudogenes are genomic segments similar
to specific functional genes but unable to yield functional
gene products. They are often found closely linked to the
corresponding functional gene and contain corresponding
flank sequences that interrupt coding regions. Then, there
are processed pseudogenes which are dispersed to distant
genomic positions and lack intervening sequences.

It is proposed in [4] that in eukaryotes DNA is formed as
a depositary of the concealed genetic information. The con-
cealed genetic information may be shared and this is useful
for intercellular and intracellular signalling, communication
and in the development of multicellular organisms. The con-
cealing is achieved by repeats accumulation.

2.2. Why DNA is shared and self-concealed

An extensive system of multicellular communication based
on signals carried by mollecular messangers enables the
multicellular cooperation in the eukaryotes. The basic
benefits of such a cooperation are apparent and include
optimisation by differentiation into distinct cell types,
collective defence, resourses and labor management.

DNA is stable but it is not an inert substance. It is subject
to numerous chemical exposures (control of gene expression,
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methylation) that modify it. DNA may also be rearranged
through the action of transposons, the genetic elements
that can move in the genome. Cells have a great variety
of DNA damage detection systems and repair mechanisms.
This design normally inhibits the formation of unwanted
random information and facilitates discarding erroneous
information, rendering the cell an efficient information
processing device. The view of DNA as a complex computing
system has emerged recently. In addition to information, DNA
stores energy, available on hybridisation of complementary
strands or hydrolysis of its phosphodiester backbones [5].
These systems need to ensure the nearly perfect fidelity of
DNA replication. The fidelity is especially important in the
multicellular organisms in view of the extend of the cell
differentiation. The extensive communication brings up a
possibility and a demand for the intercellular monitoring and
damage detection.

We propose that the eukaryotes accomplish this by a
system where each cell has its DNA as a storage of its self-
concealed genetic information. The information in DNA is
concealed for self-protection in order to be shared for outside
queries. The molecular signals going in and out of the
cell and its nucleus carry information about short segments
of DNA. The longer or sensitive segments are however
protected. We propose that DNA achieves this self-concealing
by maintenance of the families of repeats.

The assertion that the repeats are maintained in DNA
in a programmed way for self-concealing explains basic
puzzling features of repeats: the uniformity along with the
polymorphism of the repeated sequences; the freedom of the
repeated DNA to adopt quite different primary sequences
in closely related species; apparent non-functionality of the
precise amount or the precise sequence of the repeats.

The containment of repeats versus DNA sequencing
problem is receiving extensive attention of biologists,
computer scientists and mathematicians (see [6–8]).

2.3. Repeats versus DNA reconstruction

We explain the basic idea of concealing by repeats in this
subsection. Assume we are given a collection K of segments
of DNA. Each segment S from K is divided into two parts, the
initial part S(I) and the terminal part S(T). We thus may write
S = S(I)|S(T). This is an artificial assumption imposed only for
the clarity of the presentation.

A reconstruction of K is a sequence of its segments so that
the terminal part of each segment agrees with the initial part
of the next segment in the sequence. If several of these initial
and terminal parts coincide, there may be an exponential
number of possible reconstructions.

Let us consider a very simple example. Let K be the
following collection of segments, where the initial and the
terminal parts are divided by the vertical line:

A|B, B|A, A|C, C|A, B|C, C|B

the following sequences are some of the possible reconstruc-
tions:

ABACBCA, ACABCBA, BACABCB, ABCACBA.
Fig. 1 – De Bruin graph for K .

In this simple example, even unlimited computational power
is useless to anybody who wants to obtain the correct
reconstruction from the many possible reconstructions. This
phenomenon may well be described in terms of the de Bruin
graph (see Fig. 1): this graph has a node for each segment
which is an initial or a terminal part of an element of K . For
each segment S of K there is an arrow (a directed edge) from
S(I) to S(T).

The possible reconstructions now correspond to the walks
on the de Bruin graph so that each directed edge is traversed
exactly once. These walks are usually called Euler walks.
If a node of the de Bruin graph has more than one
outgoing incident directed edge, then locally there are several
independent ways to traverse these edges. The number of
the Euler walks of the de Bruin graph is therefore typically
exponential in the number of these nodes (see [8] for the
calculations).

2.4. Homogenity and polymorphism of repeat families

An important consequence of the concealing hypothesis is
that the repeats in a repeat family should develop in a
concerted way; rather than each copy, the whole repeat family
has a specific function for the DNA anonymisation. Each
intraspecies copy evolves in some sort of communication
with the others, a communication that tends to make them
all similar. This concerted behaviour has been observed. We
include several examples.

Example 1 ([9]). When an activity of an essential gene
product becomes insufficient, either by mutation or presence
of specific inhibitors, mutant cells that overcome the
deficiency can often be found. Many have acquired multiple
tandem repeats of the deficient gene, which produces
superabundance of mRNA. Repeated units are much longer
than the genes themselves; they may contain also sequences
from unlinked genomic loci and the individual repeat
units are not always identical. Rearrangements within the
repeated units can occur continually during extended growth
of the cells under conditions favouring amplification. It
has been observed that the mutations corresponding to
several deficient genes combine. The loss of amplified
genes upon removal of selective pressure suggests that
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tandem repeats and tandem arrays are dynamic. This

fluidity was directly demonstrated in experiments using

specially constructed transformed cells. Mouse cells carrying

mutations in both thymidine kinase (tk−) and adenine

phosphoribosyl transferase (aptr−) genes were transfected

with a recombinant vector containing both a tk gene from

Herpes simplex virus and an aptr gene from hamsters. Cell

lines that were both tk+ and aptr+, containing also tandem

amplifications of a DNA segment that includes both genes,

were obtained by growth in a suitable selection medium.

When selective pressure for amplified tk is maintained

but the cells are placed in growth media that selects

for aptr− phenotype, aptr− mutants appear at the same

frequency as they do in normal cell populations that have a

single wild type aptr gene. This suggests that all the amplified

copies of aptr+, 20 in number in these cells, are mutated

simultaneously. Thus, the particular mutation varies from

one cell line to another, but the overall picture is the same;

some mechanism that maintains identity is thus predicted.

In mammals, although different families and subfamilies

of interspersed repeats occur, a very small number of families

has very high copy number and dominates the genomes.

One family up to 5%, together with a small number of

families up to 20%. Reciprocal homologous crossing over

between nonallelic family members is a possible explanation

of homogenity for tandem arrays but cannot be applied

to interspread repeats without severely jeopardising the

integrity of unique sequences that surround the repeats.

The homogeneity of these families does not seem to be a

result of natural selection acting on each member: if multiple

homogeneous copies are functional, their redundancy would

tend to minimize the importance of any single mutant

copy. However, if most of the copies are nonfunctional, the

homogenisation to a species-specific version is even less

likely to be influenced by a selective pressure. A natural

explanation seems to be that the repeat family has a concerted

(global) function.

We propose that the natural selection presses for a

similarity of the repeats in a family. The similarities in

the repetitions and not their actual primal sequences are

functional. That is why each single copy in a repeat family

is relatively free from selective pressure. This coincides well

with another feature of the repeats, the polymorphism: the

repeats in a repeat family may differ 15%–20%.

Example 2 ([9]). Knobs of heterochromatin are visible at

about 23 noncentromeric locations and are associated with a

remarkable property: During meiotic divisions, the knobs can

form extra functional centromers. Like maize centromeric

heterochromatin, knob heterochromatin is replicated late

in S-phase, and the knobs contain long tandem arrays of

DNA sequences that are distinct from the sequence of

centromeric satellites. Thus, the tandem arrays themselves,

not their specific sequence, appear to be associated with the

centromere function.
2.5. Mutations and maintenance of repeat families

The necessity of continuous random key generation in some
secrecy schemes is consistent with a finding that the repeats
mutate more than other genomic regions. Each species
has a distinctive set of centrometric satellites, even when
compared with closely related species in the same genus.
This is a remarkable fact in view of the high degree of
sequence preservation elsewhere in genomes. The situation
is similar for interspread repeats: the plasticity is not limited
to sequence and copy number. Their locations are not
necessarily the same, even in closely related species. Also,
otherwise identical alleles in a particular species can differ
by the presence or absence of a repeated unit.

It is further proposed in [4] that each cell has a mechanism
to maintain the families of repeats. This has been implicitly
used in bioengineering. A misfunction of such a mechanism
would probably result in the development of several diseases.
This may explain a correlation between the increase in
the number of repeats present in the genomic DNA and
hereditary disorders in humans (see [10–16]). Observations
about the changes of repeats in DNA may help to explain
other spreading processes in multicellular organisms.

3. Concealing in information and communica-
tion technologies

The concept of hiding private or sensitive data but preserv-
ing some form of structural information has been studied
recently in various sub-domains of ICT. Some techniques con-
centrate on hiding the originator of information, i.e. anonyni-
mization, other focus on enabling particular functions over the
data that can be shared among multiple partners, such as pri-
vate matching.

3.0.1. Concealing network data

An anonymization scheme over the network packet IP ad-
dresses called CryptoPan [17] preserves the prefix hierarchy
of the original addresses, while making them computation-
ally hard to reconstruct by using hashing. This in turn allows
the sharing of network traces (with packet headers only), with
preservation of the prefix hierarchy.

Similarly, in [18], structure of the router configuration files
and data is preserved, while the actual values are obfuscated.

A technique to process and transform the network
packet payload has been proposed in [19]. This method uses
dictionaries of important sequences that are valuable from
the data mining perspective and should be preserved, while
encrypting the rest of the information with cryptographically
strong hash function. This technique performs well in terms
of data protection, however, it only allows study of content
portions pre-determined by a known list, and thus does not
allow study of the payload to detect previously unknown
content, such as e.g. malicious subsequence.

The popular Bloom filter [20] approach is used in
constructing the Hierarchical Bloom Filter payload attribution
technique [21]. A Bloom filter can store (incompletely but
efficiently) input items (which can be substrings) and easily
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answer set membership queries. It consists of k hash
functions, each associating one of m numbers to each input
item. Set membership queries exhibit no false negatives, but
can have false positives.

Payload attribution with a Hierarchical Bloom Filter stores
segments of network packet payloads with their IP source
and destination addresses. Each payload is cut into segments
s1, . . . , sn. The si’s are stored in a Bloom filter of level 0,
the pairs s1s2, s3s4, . . . , in Bloom filter of level 1, quadruples
in level 2, and so on. A query on an excerpt of payload,
which may consist of several consecutive blocks, may answer
the source and destination address by running through
consecutive hierarchy levels.

The authors propose deployment at network concentra-
tion points. Privacy protection is to be achieved by restricting
access of entities that can pose queries, otherwise exhaustive
attacks might lead to payload reconstruction.

3.0.2. Private matching

Private matching [22,23] focuses on the problem of two
entities trying to find common data elements in their
databases, without revealing private information. The basic
property (and difference from the general information
concealing problem) is that only two parties are involved;
a multiparty solution is a future work suggestion. Further
problems are asymmetry in the sequence of information
exchange among the parties and needed presumption of
honesty (‘semihonesty’ in the paper).

Private matching is a special case of cryptography theory
ofmulti-party computation: m parties want to compute function
f on their m inputs. In the ideal model, where a trusted party
exists, the parties give their inputs to the trusted authority,
it calculates f , and returns the result to each party. The ideal
model assumes an ideal situation: for example, no protocol
can prevent a party from changing its input before the
communication is started. A secure multiparty computation
protocol emulates what happens in the ideal model.

Paper [22] also introduces ‘data ownership certificates’ to
modify the privatematching protocols to be unspoofable. This
technique is shown to be useful in a more practical setting to
enable privacy-protecting sharing of e-mail white-lists in [24].

3.0.3. Data masking

Various techniques of masking, sanitizing and obfuscating
data have been studied to enable test- or third-party de-
velopment over sensitive databases (such as the Human
Resources data). After sanitization, the database remains
usable—the look-and-feel and some relations and distribu-
tions are preserved—but the information content is secure.
The used techniques include masking, shuffling, substitu-
tion, number-variance, encryption etc. [25]. These techniques
share a similar goal with information concealing, but focus
on structured data without the need of preserving the local
information.
3.0.4. Data mining and anonymization

In data mining, anonymization mechanisms (obfuscating the
originator or the private part of the data) are currently studied
intensively. Privacy mechanisms can be classified into several
categories, according to where they are deployed during the
life cycle of the data. The mechanism proposed in this paper
falls into the category where the individuals trust no one
but themselves, and they conceal their respective data before
theymake them available for sharing. The existing algorithms
in this category [26–30] are called local perturbation; they
are based on different ideas than the concealing procedure
proposed in this article.

In another category, data publishing, data are anonymized
at a central server; the individuals are required to trust
this server [31]. Anonymization in social networks is studied
in [32].

An important theoretical foundation for data anonymity
and originator protection was laid in [33]. The k-anonymity
model for protecting privacy allows holders to release their
private data without being distinguishable from at least k − 1
other individuals also in the release.

3.0.5. Steganography

This form of information hiding [34,35] is a related art and
science of writing hidden messages in such a way that no one
apart from the sender and intended recipient realizes there
is a hidden message; this nowadays includes concealment
of digital information within computer files. Comparably,
steganalysis is the art of detecting the hidden information.
Steganography is a mature science, in particular focusing
on the domain of Digital Rights Management (DRM), where
various ‘watermarking’ or ‘tamper-proofing’ techniques may
seamlessly embed extra information about the origin of a
digital work within itself.

3.0.6. Information retrieval

The ‘attacker problem’ of concealed string reconstruction
(see Section 4) has a strong connection to the problem of
information retrieval [36], where probabilistic information
about the expected string (e.g. natural text) may be used to
derive further information or assist text reconstruction.

3.0.7. Computing functions on encrypted data

In recent years, the ability to delegate processing one’s data
without giving away access to it has gained much interest
(motivated e.g. by virtualisation and cloud computing). A
family of the so-called homomorphic encryption schemes [37]
have been proposed to address this problem. Their purpose
is related, but not identical, to concealing: homomorphic
encryption allows the execution arbitrary operations on
(homomorphically) encrypted data, with the result stored in
new ciphertext, still decryptable by the originator party only.
No information or data is therefore revealed (or shared), yet
the outcome of the operation is not shared either—i.e. a third
party may execute an operation on the data, yet the result
remains encrypted, and therefore obfuscated, to it.
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3.1. Segment shuffling

Finally we mention that our first attempt to solve the
anonymization problem [38] was using random permutations
of a collection of short overlapping segments. This method
however by itself does not lead to concealing the original
data information. It is shown in this paper that in
order to sufficiently extend the families of repeats of
the resulting sequence and make the concealing provably
successful, other procedures need to be performed as
well. In particular the overlapping segments containing
complete local information need to be prolonged by attaching
additional short segments to their beginning and/or their
end. The shuffling permutation also needs to satisfy some
properties. This is described in the rest of the paper.

4. Information concealing problem

We introduce formally the information-sequence concealing
problem. Let |ω| denote the number of symbols (length) of
sequence ω. The sequence concealing problem is the following:
Given a sequence ω and a small positive integer k, we want to
transform ω to another sequence ωF so that:

I. If s is a segment of ω with |s| ≤ k, then s is a segment of
ωF.

II. It is computationally hard to reconstruct sequence ω from
ωF.

III. The length of ωF is linear in |ω|.
IV. It is also desirable that with low probability, a segment

not in ω appears in ωF, and that relative frequency
(i.e., frequency rank) of segments of ω of a given length
is preserved in ωF. The precise statement of these two
conditions is however strongly application dependent.

Given the statement of the information concealing
problem, the key issue is how much information about ω can
an attacker deduce from ωF; let us call this issue the attacker
problem.

Clearly, the answer to the attacker problem is application-
dependent. If the input sequence ω is very restrictive, e.g. if
a short prefix uniquely determines larger part of ω and the
k-segments of ω may be distinguished within the larger k-
segment superset of ωF, then inevitably large part of input ω

may be reconstructed from ωF. In quite a number of practical
situations (DNA sequence, computer program, sound and
video trace, text on non-specific topic), however, this is not
the case. Moreover, for restrictive input sequences, we can
perform preparatory procedures (as procedure S described
below) which make the input sequence less specific.

In an attempt towards the solution of the attacker
problem, wemake the consistency assumption below. Assuming
the consistency assumption, we can prove in Section 8 that it
is hard for the attacker to reconstruct a large part of the initial
sequence ω.

Consistency assumption. The complete input of the attacker
problem, i.e. all the useful information an attacker has about
ω, for instance obtained by analysing ωF, is

• The length |ω|, the length k of the preserved segments, and
the concealing algorithm used in obtaining ωF.

• The complete list of the frequencies of repeats of segments
of ωF.
5. Concealing by repeats

The input of the problem is a sequence over an alphabet. We
first turn it into a cyclic sequence by connecting its beginning
and end.

Next we describe five procedures which are used in the
algorithm. The basic pattern of all the procedures is the
same and may be described as follows: the input is a
cyclic sequence ω. First, ω is partitioned into consecutive
disjoint blocks. Then the terminal part of the preceding
block of length o (the overlap) is added in front of each
block. The resulting segments contain all the studied local
information; depending on the procedure, these segments
will also contain some excess information which is vital
in a proposed composition of the procedures which forms
our concealing algorithm. Next, a segment called dust can
but need not be added behind each segment. The enhanced
blocks are called the cards. The last step consists in arranging
the cards into the output cyclic sequence ωF.

The first procedure S has a preparatory character in the
concealing algorithm. Several runs of S have the role of
breaking the local sequential order in the input sequence.

5.1. Procedure S(ω, o, lb,ub)

Its input is a cyclic sequence ω, and it has parameters o, lb,ub;
o stands for the size of the overlap, lb is for lower bound of the
length of a block, and ub is for the upper bound of the length
of a block. The procedure S(ω, o, lb,ub) is defined by 1–4 below.

1. We partition (sometimes we say that we cut) ω into
consecutive disjoint blocks P1, . . . , Pm such that the length
of each Pi is chosen at random between lb,ub.

2. We add overlap of length o in front of each block. The
overlapping segments thus contain all the original sub-
segments of length up to o + 1.

3. The blocks enhanced by the overlaps now start and end
with the corresponding overlaps. If these were arranged
into a cyclic sequence, the overlaps would neighbor. This
may help an attacker in reconstruction. To break the
neighborhood relationship of the overlaps, we may add
dust (a randomly chosen segment) behind each block.
Adding dust is optional and application dependent. A
natural restriction is that the dust is a segment of the
input sequence and that the average length of dust is
1/2(lb+ub)−o to match the average length of the segments
complementing the overlaps. However, depending on
applications, and the stringency of condition [IV] of the
sequence concealing problem, length of dust may be
different and the dust need not be a segment of the input
sequence.

4. We arrange the resulting cards randomly into a cyclic
sequence.

As an illustration we perform S on an example input
sequence: ‘theEaimEofEthisEpaperEisEtoEpresentEanEinfor-
mationEconcealingEalgorithm’ where in order to make the
presentation easier, we replace the symbol for the empty-
space by symbol ‘E’. Hence, in the example below, ignore the
empty-spaces.
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Example 1: Procedure S(ω, o, lb,ub)

Input ω = theEaimEofEthisEpaperEisEtoEpresentEanEinfor-
mationEconcealingEalgorithm, parameters o = 3, lb = 4,
ub = 6.

1. First, the input sequence is partitioned randomly into
blocks of length 4, 5 or 6. The blocks are divided by ‘+’
below:
theEai+mEofEt+hisE+pape+rEisE+toEpr+esent+EanEi+
nfor+matio+nEco+ncea+lingE+algor+ithm+

2. Next we add overlap (of length o = k − 1 = 3) in front of
each block:
thmtheEai+EaimEofEt+fEthisE+isEpape+aperEisE+

isEtoEpr+Epresent+entEanEi+nEinfor+formatio
+tionEco+Econcea+cealingE+ngEalgor+gorithm+

3. Next we add the dust behind each block (of length
approximately 2), and we get the cards:
thmtheEaip+EaimEofEtim+fEthisEcon+isEpapeEin+

aperEisEa+isEtoEproEp+Epresentese+entEanEilgo+

nEinforiE+formatiofo+tionEcoE+EconceaEci+
cealingEpa+ngEalgorEp+gorithmap+

4. Finally the output is given by arranging the
cards in a random order (here we use the order
14,9,10,13,5,3,12,1,6,4,7,11,8,15,2):
ngEalgorEpnEinforiEformatiofocealingEpaaperEisEafE
thisEconEconceaEcithmtheEaipisEtoEproEpisEpapeEinE
presentesetionEcoEentEanEilgogorithmapEaimEofEtim

5.2. Procedure S1(ω, lb,ub)

Procedure S1(ω, lb,ub) is as S but the overlap is always the
whole preceding block—typically exceeding the size needed
to preserve the studied local information (this excess is used
in the composition of the procedures forming our concealing
algorithm). Hence, if the blocks are

ω = P1P2P3 · · · Pm,

then the cards of S1 are P1P2, P2P3, . . . , PmP1.
Each Pi appears once as initial segment and once as

terminal segment of each card. Hence, the cyclic consecutive
order of the cards of S1 may be described by a permutation π

of 1, . . . , m; for further discussions it turns out useful to define
such permutation so that it assigns, to each terminal block
of a card, the initial block of the next card. By permutation of
1, . . . , m we mean a bijection from set {1, . . . , m} onto itself. If
π is a permutation then π−1 denotes the inverse permutation
(π(x) = y if and only if π−1(y) = x). Hence, in our formalism,
card Pi−1Pi is followed by card Pπ(i)Pπ(i)+1.

The output of S1 thus always has form

P1P2Pπ(2)Pπ(2)+1 · · · P
π−1(1)−1P

π−1(1)
.

For instance, if we have m = 3 then the cards are
P1P2, P2P3, P3P1 and a shuffling which results in sequence
P1P2P3P1P2P3 is described by permutation π(1) = 2, π(2) =

3, π(3) = 1.

5.2.1. Acceptable permutations

For our purposes, not all permutations π are acceptable; let us
formally denote by A the set of all the acceptable permutations.
To define A, we first introduce an auxiliary bipartite graph
G(π).

Definition 5.1. Graph G(π) has vertex-set V = V1 ∪ V2 where
V1 = {u1, . . . , um} and V2 = {v1, . . . , vm}. The edge-set of G(π)

is the union of three disjoint perfect matchings of the vertex-
set, namely:

1. The perfect matching M1 consisting of the edges {ui, vi}.

2. The perfect matching M2 consisting of the edges {ui+1, vi}.

3. The perfect matching M3 consisting of the edges {uπ(i), vi}.

Definition 5.2. We construct a directed graph G′(π) from G(π)

by first directing each edge of M2∪M3 from V2 to V1, and then
contracting each edge of M1.

Definition 5.3 (Of Set A of All Acceptable Permutations). Permu-
tation π is acceptable (π ∈ A) if and only if the following two
conditions are satisfied:

1. The directed graph G′(π) has a directed Eulerian closed
walk where the edges of M2 and M3 alternate. This
condition is equivalent to saying that permutation π

describes a rearrangement of the cards of S1 into a
sequence.

2. In the auxiliary graph G(π), the union of the perfect
matchings M2∪M3 contains many (at least m/c where c ≥ 2
is a small constant) cycles. This condition is added in order
tomake the reconstruction of the input sequence hard; see
the sections below.

The following observation about the graph G(π) will be
used in the analysis of the attacker problem.

Observation 5.4. Let G(π) be as in Definition 5.1. For vi ∈ V2 let
s(v) = Pi be its associated segment. Then we have the following
equality between cyclic sequences:

P1P2P3 · · · Pm = s(M2(1))s(M2(2)) · · · s(M2(m)),

where M2(i) denotes the vertex of V2 connected with ui ∈ V1 by an
edge of M2.

For illustration we perform S1 on the output sequence of
the previous example (which would be the natural use of S1,
as described later). Again in this example ignore the empty-
spaces.

5.3. Procedure S1+(ω, lb,ub)

If the input of the procedure S1 comes from several runs of
the preparatory procedure S described above, then we need
to modify S1 in order to make its output generic, that is to
intentionally preserve the attacker-confusing overlaps. This
modified procedure is called S1+.

We recall that S1 repeats the whole blocks Pi, i.e. the output
of S1 is the cyclic sequence

P1P2Pπ(2)Pπ(2)+1 · · · P
π−1(1)−1P

π−1(1)
.
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Example 2: Procedure S1(ω, lb,ub)

Input ω = ngEalgorEpnEinforiEformatiofocealingEpaaper
EisEafEthisEconEconceaEcithmtheEaipisEtoEproEpisEpape
EinEpresentesetionEcoEentEanEilgogorithmapEaimEofEtim,
parameters lb = 6 and ub = 8.
First, the input sequence is partitioned randomly into
blocks of length 6, 7 or 8. The blocks are divided by ‘+’
below:
ngEalgo+rEpnEinf+oriEfor+matiofo+cealing+Epaape+

rEisEa+fEthisEc+onEconce+aEcithm+theEaipi+sEtoEpro
+EpisEp+apeEin+Epresent+esetionE+coEentE+anEilg+

ogorith+mapEai+mEofEtim+

Next we add overlap in front of each block. For procedure S1

the overlap is always the whole preceding block. We get the
following cards; to make the example easier to understand
we indicate by ‘*’ the division of each card into two blocks:
mEofEtim*ngEalgo+ngEalgo*rEpnEinf+rEpnEinf*oriEfor+
oriEfor*matiofo+matiofo*cealing+cealing*Epaape+

Epaape*rEisEa+rEisEa*fEthisEc+fEthisEc*onEconce+

onEconce*aEcithm+aEcithm*theEaipi+theEaipi*sEtoEpro+

sEtoEpro*EpisEp+EpisEp*apeEin+apeEin*Epresent+
Epresent*esetionE+esetionE*coEentE+coEentE*anEilg+

anEilg*ogorith+ogorith*mapEai+mapEai*mEofEtim+

Finally the output is given by rearranging the cards by
an acceptable permutation, i.e. by a permutation whose
corresponding bipartite graph consists of a lot of cycles.
The smallest length of a cycle is 4. It is not difficult to
see that the following permutation π creates nine 4-cycles
and one 6-cycle. In the following description of π, the cycles
are grouped together; for instance the first 4-cycle has
edges (v1, u10), (v9, u2), (v1, u2), (v9, u10). The first two of
them belong to perfect matching M3, the last two belong
to perfect matching M2.
[π(1) = 10, π(9) = 2]; [π(2) = 6, π(5) = 3]; [π(3) = 9, π(8) =

4]; [π(7) = 13, π(12) = 8]; [π(14) = 11, π(10) = 15]; [π(11) =

18, π(17) = 12]; [π(19) = 14, π(13) = 20]; [π(16) = 21, π(20) =

17]; [π(15) = 19, π(18) = 16]; [π(21) = 7, π(4) = 5, π(6) = 1].
Hence the final sequence (for ease of understanding we
preserve the separation symbols ‘*’, which in reality would
not be present) is:
ngEalgo*rEpnEinfEpaape*rEisEaEpisEp*apeEintheEaipi*
sEtoEprofEthisEc*onEconcerEpnEinf*oriEforonEconce*
aEcithmEpresent*esetionEmEofEtim*ngEalgoaEcithm*
theEaipianEilg*ogorithapeEin*Epresentogorith*
mapEaicoEentE*anEilgesetionE*coEentEsEtoEpro*
EpisEpmapEai*mEofEtimrEisEa*fEthisEcmatiofo*
cealingoriEfor*matiofocealing*Epaape

We assume that the input ω of S1+ comes from repeated
runs of procedure S and so ω contains a lot of segments of
length o (the overlaps of runs of S) repeated at least twice; let
us denote by R the set of all these segments.

Procedure S1+ starts as S1 by partitioning of ω into blocks

P1, P2, . . . , Pm.

The blocks of S1+ cut some of the segments from R. To reflect
this, we write Pi = rT

i−1Qir
I
i where

• Segment rT
i−1 is an empty segment or a terminal segment

of an element of R cut by the partition between blocks Pi−1
and Pi.
• Segment rI
i is an empty segment or an initial segment of

an element of R cut by the partition between blocks Pi and
Pi+1.

Summarizing this notation we write

P1P2 · · · Pm = Q1r1Q2r2Q3r3 · · · rm−1Qmrm,

where each ri is such an element of R that is cut by the
blocks of S1+, or an empty segment. Each Pi = rT

i−1Qir
I
i where

ri = rI
ir

T
i .

The first difference of S1 and S1+ is that the overlaps of
S1+ are not the whole preceding blocks. Instead, the overlap
added in front of block Pi+1 is Qir

I
i . Hence, block Pi+1 with the

overlap added in front of it has form QiriQi+1rI
i+1.

To make the cards of S1+ more generic (see the same
step in the description of Procedure S), we change each such
QiriQi+1rI

i+1 into QiriQi+1r′i+1 where r′i+1 is obtained from rI
i+1

by adding a segment so that r′i+1 has length o and is repeated
elsewhere in ω.

Summarising, the output of S1+ has form

Q1 ∗ Q2 ∗ Qπ(2) ∗ Qπ(2)+1 ∗ · · · ∗ Q
π−1(1)−1 ∗ Q

π−1(1)
∗,

where each ∗ stands for a segment of length o which is
repeated (at least) twice in this output, or the empty string.
More specifically, if ∗ follows segment Qi then it is equal to ri
or to r′i.

5.4. Procedure S2(ω, o)

Let S2(ω, o) be as follows: we assume its input is an output of
S1, i.e. it is the cyclic sequence

P1P2Pπ(2)Pπ(2)+1 · · · P
π−1(1)−1P

π−1(1)
.

Note that in this sequence, each block Pi appears twice.
Procedure S2 first cuts each Pi randomly into P1i , P2i so that

length of P1i is at least o, i.e. the whole overlap of length o,

which we denote by oi, is contained in P1i . The trick of the
concealing algorithm is that both copies of each Pi are cut in the
same way! Let oiP

2
i denote P2i with the added overlap.

For example, if Pi is equal to ‘abcdefghijkl’ and o = 3 then
a possible cut of S2 is ‘abcde+fghijkl’; P1i is equal to ‘abcde’, P2i
is equal to ‘fghijkl’ and oiP

2
i is equal to ‘cdefghijkl’.

We may describe the set of the cards of S2 as the disjoint
union of two sets C1 ∪ C2, where

C1 = {o1P21P12, o2P22P13, . . . , omP2mP11}

and

C2 = {o1P21P1
π(1)

, o2P22P1
π(2)

, . . . , omP2mP1π(m)}.

We remark here that the cards of C1 correspond to the
edges of perfect matching M2 of graph G(π) and the cards of
C2 correspond to the edges of perfect matching M3 of G(π) (see
Definition 5.1).

Finally S2 arranges C1 ∪ C2 into a random cyclic sequence.
For illustration we perform S2 on the output sequence of

the previous Example 2 (which would be the natural use of S2,
as described later). Again in this example ignore the empty-
spaces.
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Examlpe 3: Procedure S2(ω, o)

Input ω = ngEalgo*rEpnEinfEpaape*rEisEaEpisEp*
apeEintheEaipi*sEtoEprofEthisEc*onEconcerEpnEinf*
oriEforonEconce*aEcithmEpresent*esetionEmEofEtim*
ngEalgoaEcithm*theEaipianEilg*ogorithapeEin*
Epresentogorith*mapEaicoEentE*anEilgesetionE*
coEentEsEtoEpro*EpisEpmapEai*mEofEtimrEisEa*
fEthisEcmatiofo*cealingoriEfor*matiofocealing*Epaape,
parameter o = 3.
A consistent partitioning into blocks is indicated below:
ngEa+lgo*rEpnEi+nfEpa+ape*rEis+EaEpis+Ep*ape+

EintheEa+ipi*sEtoE+profEthisE+c*onEco+ncerEpnEi+
nf*ori+EforonEco+nce*aEci+thmEpre+sent*eseti+
onEmEofE+tim*ngEa+lgoaEci+thm*theEa+ipianEi+
lg*ogori+thape+Ein*Epre+sentogori+th*mapE+aicoEe+

ntE*anEi+lgeseti+onE*coEe+ntEsEtoE+pro*Epis+EpmapE+

ai*mEofE+timrEis+Ea*fEthisE+cmati+ofo*ceal+ingori+
Efor*mati+ofoceal+ing*Epa+ape
Next we add overlap (of length o) in front of each block (and
we delete the ‘helpful symbol’ *):
apengEa+gEalgorEpnEi+nEinfEpa+aperEis+EisEaEpis+
pisEpape+apeEintheEa+eEaipisEtoE+toEprofEthisE+

isEconEco+EconcerEpnEi+nEinfori+oriEforonEco+

EconceaEci+EcithmEpre+presenteseti+etionEmEofE+

ofEtimngEa+gEalgoaEci+EcithmtheEa+eEaipianEi+
nEilgogori+orithape+apeEinEpre+presentogori+
orithmapE+apEaicoEe+oEentEanEi+nEilgeseti+
etionEcoEe+oEentEsEtoE+toEproEpis+pisEpmapE+

apEaimEofE+ofEtimrEis+EisEafEthisE+isEcmati+ofoceal+
ealingori+oriEformati+atiofoceal+ealingEpa+Epaape
Finally we rearrange the cards in a random order. The
resulting sequence is as follows:
apengEagEalgorEpnEinEinfEpaatiofocealaperEisEisEaE
pispisEpapeEisEafEthisEapeEintheEanEilgesetieEapisEtoE
toEprofEthisEisEconEcoEconcerEpnEiEpaapenEinforisE
cmatiofocealealingorioriEforonEcopisEpmapEEconceaEciE
cithmEprepresentesetiofEtimngEagEalgoaEcioriEformatiE
cithmtheEaeEaipianEinEilgogoriorithapeapeEinE
prepresentogoriorithmapEetionEmEofEapEaicoEeealingE
paoEentEanEisetionEcoEeoEentEsEtoEtoEproEpisapEaimE
ofEofEtimrEisisEcmatiofocealealingori

5.5. Procedure S2+(ω, o)

We assume its input is an output of S1+. This procedure is
defined analogously as S2 with the only difference that the
cuts are performed to segments Qi instead of segments Pi.

6. The concealing algorithm

Let the input string be ω, and the length of the preserved
segments be k. We consider two scenarios, weak concealing
and strong concealing, depending on the nature of the
input. We perform the weak concealing algorithm if the input
is nonspecific, i.e., short segments have many possible
alternative prolongations, or there does not exist any outside
knowledge about the likelihood of presence of some segments
in the input (e.g. an English text).
The weak concealing algorithm may be described as

ωF = S2(S1(ω,3k/2,2k), k − 1).

We choose to have the block length in S1 longer and to overlap
the whole blocks in S1 since we want to ensure that the cuts
of S2 may be done in the same way in each of the two copies
of the blocks Pi.

The strong concealing algorithm may be written as

ωF = S2+(S1+(S · · · S(ω, k − 1, k,3k/2))),3k/2,2k, k − 1,

where the number of repetitions of procedure S is application
specific.

7. Analysis of the concealing algorithm

Observation 7.1. The concealing algorithm preserves all segments
of length k present in the input sequence ω within the output
sequence ωF.

This observation is straightforward as whenever any of the
above procedures cuts the input string, an overlap of length
o ≥ k − 1 is added in front of the segment following the cut,
thus preserving all sub-segments of length k which would
otherwise be partitioned by the cut.

It is also straightforward that both weak and strong
concealing algorithms are linear in |ω| if we have

• Access to a generator of random permutations of the
numbers less than |ω|.

• Access to a generator of random elements of A (see
Definition 5.3).

A random permutation may be generated in linear time
(see [39]). We will not discuss the complexity of generating
random elements of A. Instead, we specify a large subset B

of A such that generating a random element of B may be
reduced to generating a randompermutation of a number less
than |ω|.

Each element of B may be constructed as follows: we take
any permutation π of m/2 (we assume m is even) and we
consider the pairing P(π) of {1,2, . . . , m} given by (1, π(1) +

m/2), . . . , (m/2, π(m/2)+m/2). This pairing may be looked at as
an involution i(π) (a permutation α is involution if α(α(x)) = x
for each x) on m.

Finally, we construct β = β(π) by shifting i(π) by 1, i.e., by
letting β(a) = i(π)(a) + 1 modulo m. We let β belong to
B if the following additional condition is satisfied: if O(a)

denotes β(a + 1) then Oj(1) ≠ 1 for j < m. This condition
makes sure that the first condition of the definition of
the acceptable permutation (Definition 5.3) is satisfied. The
following observation is straightforward.

Observation 7.2.

|B| ≥ (m/2 − 1)!

Further, the graphs defined by a permutation from B are disjoint
unions of m/2 cycles of length 4. Generating a random element from
B is as hard as choosing a random permutation of m/2.

The following observation is also straightforward.
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Observation 7.3. The length of the output of each of the procedures
applied to input ω is linear in |ω|. For example, for S and S1 it is 2|ω|.

Remark 7.4. Preliminary computational experiments with
English text suggest that the algorithm behaves well with
respect to the property IV of the information concealing
problem.

8. Hardness of the attacker problem

We recall that the attacker problem introduced in Section 4
reads:

How much information about ω can an attacker deduce from
|ω|, k, the knowledge of the concealing algorithm, and the complete
list of the frequences of repeats of segments of ωF?

For instance, the attacker can try to get all the overlaps of
S2 since assuming ωF has no accidental repeats these overlaps
appear exactly four times in ωF and no other segment is like
that. The attacker may partition ωF into cards as indicated
by all these overlaps. She gets a collection of cards, with
(k − 1)-length segments marked in the beginning and the end
of each card. The attacker wants to overlap these marked
segments. Depending on whether ωF has accidental repeats, the
attacker possibly cuts in more places than were the original
cards used in the algorithm. Hence, in her collection of cards
some overlaps should not have been considered, and some
segments have overlaps with more than one other card.
These considerations naturally specify the domino and donkey
problems.

8.1. Donkey problem

In the donkey problem we assume that ωF has no accidental
repeats. What does the attacker get? There are two versions of
the algorithm. Let us first consider the strong concealing where
the preliminary step is performed.

(1) As described above, using the 4-repeats of length k − 1 of
ωF, the attacker gets the cards of S2+, i.e. C1 ∪ C2, where

C1 = {o1Q2
1 r1Q1

2 , o2Q2
2 r2Q1

3 , . . . , omQ2
mrmQ1

1 }

and

C2 = {o1Q2
1 r′1Q1

π(1)
, o2Q2

2 r′2Q1
π(2)

, . . . , omQ2
mr′mQ1

π(m)}.

(2) The attacker also gets each Q1
i and each oiQ

2
i since these

are exactly maximal initial and terminal segments of the
cards above which are repeated twice in ωF.

(3) Bymatching the overlaps, the attacker gets each pair Q1
i Q2

i
since the overlap oi in oiQ

2
i is a terminal segment of Q1

i and
we may assume that these cannot be misinterpreted.

(4) What does the attacker get from the initial applications of
procedure S? Each of their overlaps (of length k−1) appears
at least twice in the input of S1+. Moreovermost of the cuts
of the procedures S are different. Let us recall here that
among these overlaps may be also the dust. Procedures
S1+ and S2 cut into some of these. Those cut will remain
2-repeats, those not cut may gain repeats. Moreover, S1+

introduces dust in the border of each card: this adds 2-
repeats of strings of length k − 1 indistinguishable from
the 2-repeats coming from initial procedures S.
In the case where the weak concealing algorithm is
applied, the attacker has 1., 2., 3. where Q2

i ri and Q2
i r′i are

replaced by P2i and Q1
i is replaced by P1i .

The next proposition summarises the possible types of
repeats introduced by the algorithm.

Proposition 8.1. All the repeats of ωF generated by the
weak or strong concealing algorithm are those described
in (1), (2), (3) and (4).

Corollary 8.2. All the useful information for the attacker problem
is |ω|, k, and (1), (2), (3) and (4).

The information (1), (2), and (3) may be described by the
auxiliary bipartite graph G(π) defined in Definition 5.1.

If the weak concealing algorithm is applied, information
(4) does not exist. The attacker problem is thus reduced to the
following:

The donkey-decision problem. The input is a bipartite graph G
where the vertices in both parts V1, V2 are ordered. Let V1 =

{u1, . . . , um} and V2 = {v1, . . . , vm}. Moreover a segment s(v)

of length at least 3k/2 is associated with each element of V2.
The set of the edges of G is formed by a disjoint union of two
perfect matchings M2, M3. The attacker needs to reconstruct
string

s(M2(1))s(M2(2)) · · · s(M2(m)),

where M2(i) is the vertex of V2 connected with ui ∈ V1 by an
edge of M2.

The difficulty of the donkey-decision problem is the
following: bipartite graph G is a union of two edge-disjoint
perfect matchings. Each vertex of G thus has degree 2 and
G is a union of disjoint cycles. To solve the donkey-decision
problem, one needs to choose the correct perfect matching
independently in each of these cycles (namely, the perfect
matching induced by M2). This is impossible, and the list
of all the possibilities is almost always exponential in the
number of the cycles, since each of the cycles has two perfect
matchings. This is analysed precisely below, when we speak
about the feasible solutions.

Next we argue that, when the strong concealing algorithm
is applied, the attacker problem is reduced to the donkey-
decision problem too. The attacker is left with the statistics of
the repeats of ωF. Here comes the reason why we introduced
the dust in S1+: it is to make sure that the 2-repeats appear
symmetric for both matchings M2, M3. This hides the repeats
introduced by the initial applications of procedure S. The
information of [4.] is thus useless. We obtain:

Proposition 8.3. The attacker problem for both strong and weak
concealing is reduced to the analysis of the donkey-decision problem.

A feasible solution to the donkey-decision problem is any
sequence s(M(1))s(M(2)) · · · s(M(m)), where M is any perfect
matching of the input bipartite graph G. In order to solve
the donkey-decision problem, one needs to choose, from the
pool of these feasible solutions, the unique correct one. Next
we argue that unless the input to our problem is extremely
restrictive, there is an exponential number of the competative
solutions.

The bipartite graphs G coming from A have at least
2m/c perfect matchings. The output sequences of two perfect
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matchings M, N may still be equal: if the cycle has length 4,
this happens if and only if the two vertices vi, vj of V2 in
each 4-cycle in which M, N differ have the same associated
segment (s(vi) = s(vj) as defined in Observation 5.4).

For instance, if all the vertices of V2 have the same
associated segment, then there is only one competative
solution. This extreme situation may happen if the input ω

is a sequence of repetitions of one symbol only.
If two symbols may appear in the segments (of length

at least 3k/2) associated with the vertices of V2, then
the probability that in a 4-cycles the corresponding pairs
of strings are indistinguishable is 2−3ka/2. Hence with
only exponentially small probability there is less than an
exponential number of feasible solutions.

8.2. Domino problem

In a more realistic situation the attacker does not know the
correct list of cards of S2 and hence she needs to choosewhich
4-repeats to ignore. We may assume that she has some hints
as to which overlaps are ‘likely’ ok. This is the situation we
model by the following problem.

Shortest domino row problem (SDRP). Assume we are given
a collection of dominoes (domino will mean a rectangle
partitioned vertically into two squares, where one is initial
and the other one is terminal), and we are also given a graph
on the squares. This graph should be interpreted as the graph
of hints. We want to put all the dominoes into a row, so that
if two consecutive squares are connected by an edge of the
graph, we can put one square on top of the other (i.e., identify
them). The aim is to make the resulting row as short as
possible, i.e. to satisfy as many hints as possible.

Let us define the (de Bruijn-type) graph G = (V, E) where V
is the set of all the squares, and E is the set of the dominoes:
edge ei connects the squares of domino Qi. The following
observation is straightforward.

Observation 8.4. There is a natural bijection between the set of
the Euler circuits (Eulerian closed walks) of G and the set of all
the circular sequences consistent with the overlapping dominoes
Q1, . . . , Qm.

Theorem 1. The SDRP is search-NP-complete.

Proof. Assume that in the auxiliary graph, there is an edge
between two squares if they are equal, but not all such edges
are there. This is exactly consistent with our interpretation.
Now, in the reformulation with the de Bruijn graph and the
Euler circuit, this corresponds to the problem that we are
given a graph, with some transitions between neighboring
edges recommended, and we want to find an Euler circuit
with as many recommended transitions as possible. A
particular instance is that some transitions are forbidden,
and we want to find out whether an Euler circuit where all
the transitions are allowed exists. This is known to be NP
complete [40].

We have in fact a search instance of this problem: we know
that such an Euler circuit exists, and we want to find it. There
is a standard trick which shows that the decision problem is
polynomial if the search problem is polynomial:
Assume there is a polynomial algorithm A that solves the
search version, and let its running time be n10, say. To solve
the decision problem, we apply A to an input. It either finds
the right Euler circuit and then the answer is YES, or it runs
longer than n10, and then the answer is NO. �

9. Conclusion

We define the information concealing problem and propose
an algorithm to solve it. It is based on a seminal observation
coming from the difficulties of DNA reconstruction by
hybridisation. The authors along with Jenny Blamey proposed
in [4] that in eukaryotes the cells have DNA as a depositary
of concealed genetic information and the genome achieves
the self-concealing by accumulation and maintenance of
repeats. The protected information may be shared and this
is useful for the development of intercellular communication
and in the development of multicellular organisms. It is
proposed further in [4] that the multicellular organisms
have a mechanism to maintain the families of repeats.
Observations about the development of the repeats may help
to explain some other spreading mechanisms in multicellular
organisms, and desease.

In other words, we propose that DNA contains repeats
in order to solve the information concealing problem. We
want to stress that even though our algorithm is inspired
by the repeats in DNA, the output of the algorithm, aside
of containing repeats, has no other similarities to the DNA
structure as far as we know. The “concealing” text fraction
of the output of the algorithm is higher than the 50% in
eukaryots. This may reflect the fact that our algorithm is a
general method.

The presented algorithm may be efficiently implemented.
In analysing the amount of information leaked by the
concealing algorithm to an attacker (this is called the
attacker problem in the paper), it is shown that with very
high probability there is an exponential number of feasible
solutions which are indistinguishable from the available
information, among which the attacker needs to choose the
correct one.
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