
R&D Centre for Mobile Applications (RDC)
FEE, Dept of Telecommunications Engineering

Czech Technical University in Prague

RDC Technical Report TR-13-3

Internship supervisor: Lukas Kencl, lukas.kencl@fel.cvut.cz

Evaluation of Information-Concealing
Performance in Email Filtering

Chao Chhaya, Ecole des Mines d’Alès, France,

chhaya.chao@mines-ales.org

Prague, September 2013

Acknowledgments

I would like to express my special gratitude and thanks to Dr. Kencl who guided and
supervised me during all my internship. He helped me in doing this project where i came
to know about so many new things, i am really thankful to him.

I would like also to express my gratitude to my school department director Mr. Runtz,
and to Prof. Bestak who gave me the golden opportunity to do my internship in Prague.

My thanks and appreciations also go to my colleague who have helped me out with
their abilities, in developing the project.

2

Contents

1 Introduction 1
1.1 The Research and Development Centre . 1
1.2 The project: information-concealing in spam filtering 2
1.3 Objectives . 2

2 Related work 4
2.1 Concealing information: algorithm . 4
2.2 Tools . 5

2.2.1 Postfix: server mail . 5
2.2.2 ThunderBird: client mail . 6
2.2.3 SpamAssassin: spam detection . 6

3 Architecture 8
3.1 Postfix-SpamAssassin associating: . 9
3.2 Postfix-ThunderBird associating: . 11

4 Method to evaluate spams score evolution 12
4.1 General Processes . 12
4.2 Solution . 14

4.2.1 Evaluation protocols . 14
4.2.2 Protocols automation . 15

5 Perfomance evaluation 19
5.1 SpamAssassin’s score evolution with default SpamAssassin’s ruleset 19
5.2 SpamAssassin’s score evolution with only dictionnary ruleset 22
5.3 Using of adapted dictionnary ruleset . 24

6 Conclusion 28

Bibliography 29

Appendices 30

3

List of Figures

3.1 Tools archicture . 8
3.2 Postfix and SpamAssassin functioning . 10
3.3 ThunderBird getting mail . 11

4.1 usual process to deliver mail and detect spam via SpamAssassin 13
4.2 method process used to deliver mail and detect spam via SpamAssassin . . 13
4.3 ThunderBird getting SpamAssassin scores 14

5.1 Mail2 SA’s score evolution with default ruleset 20
5.2 Mail20 SA’s score evolution with default ruleset 20
5.3 Mail16 SA’s score evolution with default ruleset 20
5.4 Mail14, 17, 18 and 19 SA’s score evolution with default ruleset 21
5.5 Mail19 SA’s score evolution with default ruleset and with only dictionnary

rules . 23
5.6 Mail14 SA’s score evolution with default ruleset and with only dictionnary

rules . 23
5.7 Mail4 and mail17 SA’s score comparison between unchanged dictionnary

rules (blue) and adpated dictionnary rules for k=3,4,5 (red) 25
5.8 Mail3 and mail15 SA’s score comparison between unchanged dictionnary

rules (blue) and adpated dictionnary rules for k=3,4,5 (red) 26
5.9 Mail1 and mail20 SA’s score comparison between unchanged dictionnary

rules (blue) and adpated dictionnary rules for k=3,4,5 (red) 27

4

Résumé

Dans le domaine du réseau notamment, il arrive que les chercheurs soient amenés à
partager leurs informations de réseaux. En effet certain algorithme de gestion de réseau
requierent l’accès à ce genre d’information, spécialement dans le domaine de sécurité
réseau et des systèmes de détection d’intrusion. Il s’agit d’un problème à cause de la
possibilité de révéler des informations sensibles d’ordre privées ou professionnel.

Ce rapport traite de la méthode de dissimulation d’information développée par le labo-
ratoire ≪Research and Development Centre≫à Prague. Cette méthode consiste à comparer
le ≪degré de spam≫de mail par rapport à leurs différentes versions dissimulées. Celles ci
se diffèrencient avec un paramètre k qui refère à la longueur des blocs (en nombre de
caractères) que l’on souhaite préserver à partir du mail originel.

Dans cette optique on utilise un server mail local Postfix et un module de détection de
spam : SpamAssassin. Ce module est celui qui détermine le degré de spam des mails en
associant un score a chaque mail. Plus ce score est important, plus le mail est considéré
comme un spam. Il est alors possible de déterminer comment le score évolue avec la valeur
de k.

L’objectif principal de ce projet est d’étudier la détection de spam à partir de leurs
versions dissimulées.

Abstract

In the domain of network in particular, it happens that researchers have to share some
of their networking information. Indeed, many networking algorithm require access to this
kind of information, especially in the domain of network security and intrusion detection
systems. This is a problem due to the possibility of revealing sensitive information of
private or business nature.

This project proposes a method to evaluate performance in mail filtering domain
of the concealing information algorithm developed by the ≪Research and Development
Centre≫in Prague. This method consists on compare the ≪spam level≫of mails to those
of its different concealing version. These one differ with a k parameter which refers to the
length of information we want to preserve from the original mail.

In this purpose we use a Postfix local server mail and a spam detection module:
SpamAssassin. This module is the one which determines the spam level of mails with
associated at each mail a score. Higher is this score, higher is the spam level. It is then
possible to determine how the score evolves depending on the k value.

The main objective of this project is to study spam mail detection from concealed
mail version.

Chapter 1

Introduction
For the second year at l’Ecole des Mines d’Alès, my intership takes place at the Research
and Development Centre (RDC) laboratory in Prague, under the reponsability of my
intership supervisor: Lukas Kencl, researcher and director of this RDC lab.

1.1 The Research and Development Centre

Research and Development Centre for Mobile Applications is a university laboratory
based in the Czech Technical University (CTU) in Prague. This laboratory is focused
in the domain of mobile networks and services and is in close collaboration with some
industrial partner like Vodafone and IBM.

The main mission of this laboratory is to deliver internationally competitive research
results in services and technologies in the area of mobile wireless networking, with results
of high value to industrial partners.

So all the projects devoloped in this laboratory are about mobile networks, and we can
in particular name the actual projects deal by the RDC lab [9]:

• Network Technology, Mobility and Security: Protection against attacks in IP tele-
phony.

• Voice Services: Extraction of information from Web in order to present it to a user
using speech recognition and synthesis.

• 3D Mobile Internet: The project focuses on various topics of mobile computer graph-
ics and virtual reality.

• e-Scribe: Design and set up an online voice transcription centre for the hearing-
impaired.

• Cloud Computing: There are project about cloud data security and cloud latency.

1

The concealing information project is associated with all the projects which are about
sharing information. That’s why it has a direct interest in the domain of cloud computing
where people are able to share sensitive information and where it could be interesting to
conceal this one.

1.2 The project: information-concealing in spam fil-

tering

It is a real problem for network researchers in particular to store and make available, for
studies, their information like networking traces containing entire packets payloads etc...
Indeed, this is difficult due to possibility to share sensitive information, while protection
of the sensitive content is crucial for extensive information sharing.

During this project we will study a new method designing an anonymizing technique to
conceal information [4]. The advantage of this method is to make impossible to reconstruct
the initial information from the anonymized output content, but still enable some search
into it (malicious keyword for example).

In fact the concept of hiding information potentially sensitive has been studied re-
cently in various Information and Communication Technologies subdomains. There is for
example the steganography method which refers to the art and science of writing hidden
messages in such a way that no one apart the sender and the intended recipient know
that there is a hidden message.

This method has direct application in various domain like in cloud computing where
the actual problem is that people have to trust company which store data. Another
application concerns the domain of mail where we want a structure detecting spams
without having direct access to mail itself which contains potential sensitive information.

1.3 Objectives

This internship has multiple objectives. First, it is about to understand the stakes of the
project and its benefits. Then, in a technical point of view, objectives are to familiarise
with the concealing information algorithm and its Matlab code associated. Afterward
it will be question of set up a protocol to evaluate performance of the algorithm and
automatize this protocol thanks to scripts for example.

In fact the main objective of this internship is to verified some properties announced
by the concealing information method or the necessary parameters to make these prop-
erties true. We can in particular name the property which refers to preservation of local
information (malicious keyword of certain maximal length for example) and the potential

2

preservation in size (initial information and anonymized output content could have similar
size in bits).

For this study we especially work on the preservation of some locals information. In
this purpose we study this property using mail support to know if a mail detected like a
spam could also be detected as, after being concealed by the method.

3

Chapter 2

Related work

2.1 Concealing information: algorithm

The input of the algorithm is a sequence. This one could be a text or an information
sequence from a wave, video etc...

First of all it is necessary to turn this sequence into a cycle: the end of the sequence
is connected to its beginning. Then, the concealing itself is based on repeats. Indeed, the
algorithm is constituted of 5 procedures: S, S1, S1+, S2 and S2+.

The basic idea of all these procedures is quite the same [4]. There is the input cyclic
sequence ω which is partitioned into consecutive disjoint blocks. Then, in front of each
block we add the terminal part of the preceding block. This adding part is called the
overlap. The resulting sequence contains all the studied local information. Depending on
the procedure, these segments would contain some excess information that are vital in
composition of the proceduresand that is the key in this concealing algorithm. Further-
more an additionnal segment can be added (but not needed) behind each block: it is the
dust.

The enhanced blocks are called the cards and the last step consist on shuffling these
cards to obtain the output cyclic sequence ωF .

Here an example of the S procedure which takes these following parameters: ω the
input sequence, o the overlap length, lb the lower bound of the length of a block and
ub the upper bound of the length of a block. Consider the input sequence as ≪the aim
of this paper is to present an information-concealing method ≫. To make this example
easier to understand, let’s replace the empty-space by ≪E≫. Finally, we have these param-
eters: Input ω = theEaimEofEthisEpaperEisEtoEpresentEanEinformationEcon-
cealingEmethod, o=3, lb=4 and ub=6.

4

S(ω, o=3, lb=4, ub=6) procedure example:
First the input sequence ω is partionned into disjoint blocks of size include between 4

(lb paramater) and 6 (ub). To make it easy to read we separate the blocks by a ≪+≫:
theEai+mEofEt+hisE+pape+rEisE+toEpr+esent+EanEi+nfor+matio+nEco
+ncea+lingE+algor+ithm+

Then the overlap of length 3 is added in front of each block:
thmtheEai+EaimEofEt+fEthisE+isEpape+aperEisE+isEtoEpr+Epresent+
entEanEi+nEinfor+formatio+tionEco+Econcea+cealingE+ngEalgor+gorithm+

Next the dust is added behind each block (of lenth approximately 2):
thmtheEaip+EaimEofEtim+fEthisEcon+isEpapeEin+aperEisEa+isEtoEproEp
+Epresentese+entEanEilgo+nEinforiE+formatiofo+tionEcoE+EconceaEci+
cealingEpa+ngEalgorEp+gorithmap+

Finally cards are shuffling to be arange in a random order. Then this following output
is obtained:
ngEalgorEpnEinforiEformatiofocealingEpaaperEisEafEthisEconEconceaE
cithmtheEaipisEtoEproEpisEpapeEinEpresentesetionEcoEentEanEilgogor
ithmapEaimEofEtim

2.2 Tools

2.2.1 Postfix: server mail

Postfix is a free and open source mail transfer agent, developed by Wietse Venema in
1997. The original main objective of this software was to propose an alternative to the
Sendmail software. The main Postfix features are to be fast, easy to administer, secure,
while being as far as possible compatible with Sendmail. In fact, Postfix objectives can
be listed [3]:

• Large diffusion: Postfix has to be largely diffuse and use, to have a real impact about
performance and security of messaging system on the Internet. That’s why it is a
free and open source software, with no restriction.

• Performance: Postfix is at least three times faster than his bigger rival ≪Qmail ≫.
On a computer, a Postifx server can daily send/receive one million of different mails.

• Security: Postfix uses several security levels to protect system from intrusion.

• Safety and robustness: When system has no more memory or free space, Postfix will
not cause damage, it was developed to be under control.

5

• Compatibility: Postfix was developed to be compatible with Sendmail to facilitate
the software switch.

• Flexibility: In fact Postfix contains several programs with their associated tasks.
Each of this program could be replacing by an other one developed by users.

2.2.2 ThunderBird: client mail

Mozilla ThunderBird is a client mail free and open-source developed and distributed
by the Mozilla Foundation.

It is used to read and send mails. Here is the list of some of its features [6]:

• Message management: Thunderbird can manage multiple email, newsgroup and
news feed accounts and supports multiple identities within accounts.

• Extension and themes: ThunderBird allows the addition of features via add-ons.

• Security: Thunderbird provides some default security features and others can be
added through extensions.

• Filtering: Thunderbird incorporates a Bayesian spam filter, a whitelist based on the
included address book etc...

• Multiple platform support: Thunderbird runs on a wide variety of platforms (Win-
dows, Linus, OS X, OpenSolaris etc...).

2.2.3 SpamAssassin: spam detection

Spamassassin is also a free and open-source software released by the Apache Software
Foundation [11].

The aim goal of Spamassassin is to filter mails to detect spams. It is compatible with
a lot of server mail like Procmail, Sendmail, Postfix, Qmail etc... and it can be installed
on most of system based on Windows, Linux and Mac OS.

SpamAssassin applies a large set of rules to determine if a mail is a spam or not. In
fact, according to results of these test, Spamassassin attributes a score to the mail and if
this one is higher than the required score that is defined in a Spamassassin configuration
file, then the mail is detected like a spam.

Under Linux, this Spamassassin configuration file is located at /etc/spamassassin/local.cf
and it looks like this:

6

rewrite_header Subject [***** SPAM _SCORE_ *****]

required_score 2.0

#to be able to use _SCORE_ we need report_safe set to 0

#If this option is set to 0, incoming spam is only modified by adding some

#"X-Spam-" headers and no changes will be made to the body.

report_safe 0

Enable the Bayes system

use_bayes 1

use_bayes_rules 1

Enable Bayes auto-learning

bayes_auto_learn 1

Enable or disable network checks

skip_rbl_checks 0

use_razor2 0

use_dcc 0

use_pyzor 0

On the first two lines we can define the required score to consider a mail as a spam
(here it is 2 for example) and the manner how we change header of mail detected as
spam. Then, the ≪report safe 0 ≫means that spamassassin will just change header of spam
without changing content of body. Finally, all the other parameters like ≪use bayes ≫,
≪use bayes rules ≫etc... set at 1 or 0, define activation or not of the associated parameters.

We assume that for this project, we will only be interested to the required score part,
and let all the other parameters by defaults.

7

Chapter 3

Architecture

This section is about how Postfix Spamassassin and ThunderBird work together.
For our project, here is the different ways emprunted by a mail:

Figure 3.1: Tools archicture

(1)First, when a mail is delivered on the Postfix server mail, this one is transmitted to
SpamAssassin.

(2)Then, SpamAssassin treats this mail and return it to Postfix with its associated
score depending on rules that are activated.

(3)Finally, ThunderBird gets the mail and its score which always appears in the header
of the mail in our case.

When Postfix, Spamassassin and ThunderBird have been well installed, this imple-
mentation is made in two steps: the Postfix-SpamAssassin associating and the Postfix-
ThunderBird associating.

8

3.1 Postfix-SpamAssassin associating:

After the installation of Postfix and SpamAssassin, we want to make them work together.
In this purpose we have first to create a new group and user for SpamAssassin. Indeed,
by default SpamAssassin runs as its own user, which is not optimal. Then, we create the
group and user ≪spamd≫with its home directory, as root user:

groupadd -g 5001 spamd

useradd -u 5001 -g spamd -s /sbin/nologin -d /var/lib/spamassassin spamd

mkdir /var/lib/spamassassin

chown spamd:spamd /var/lib/spamassassin

Next it has to associate SpamAssasin to the user ≪spamd≫. This step is done by
modifying this following lines in the file /etc/default/spamassassin:

ENABLED=1

OPTIONS="--create-prefs --max-children 5 --helper-home-dir"

PIDFILE="/var/run/spamd.pid"

to:

ENABLED=1

SAHOME="/var/lib/spamassassin/"

OPTIONS="--create-prefs --max-children 5 --username spamd --helper-home-dir

${SAHOME} -s ${SAHOME}spamd.log"

PIDFILE="${SAHOME}spamd.pid"

What happens here, is that we are going to run SpamAssassin as user spamd and
make it use its own home dir (/var/lib/spamassassin/) and is going to output its logs in
/var/lib/spamassassin/spamd.log. Moreover, ≪ENABLED=1≫means that spamassassin
daemon is allowed to start.

Afterward it is question to make Postfix using SpamAssassin by modifying the file
/etc/post- fix/master.cf, where it is necessary to replace:

smtp inet n - - - - smtpd

by:

smtp inet n - - - - smtpd

-o content_filter=spamassassin

9

And of course, in the same file, we have to define ≪spamassassin≫, depending on its
user previously associated. So at the end of the file let’s add:

spamassassin unix - n n - - pipe

user=spamd argv=/usr/bin/spamc -f -e

/usr/sbin/sendmail -oi -f ${sender} ${recipient}

Finally, we have to start SpamAssassin and Postfix to make all this settings available:

/etc/init.d/spamassassin start

/etc/init.d/postfix reload

The above command will actually reload Postfix and start spamd, a daemonized ver-
sion of SpamAssassin, which is much quicker than the official Perl version as it actually
loads all SpamAssassin rules once at startup.

We assume that SpamAssassin has been already configured (required score etc...). If
not it is necessary to configure the required score before to start or restart SpamAssassin.

Note: Because we always want the score even if the mail is not a spam, this one is fixed
at -1 in /etc/spamassassin/local.cf:

required_score -1

At the end of all this steps Postfix runs according to this schema [1]:

Figure 3.2: Postfix and SpamAssassin functioning

10

Without SpamAssassin, when a local mail arrives in the maildrop directory, the Post-
fix programs ≪pick up≫and ≪cleanup≫post it in the Postfix queue. Next ≪qmgr≫which
periodically scan the queue deal the mail to the program ≪local≫which deliver the mail
in mailbox.

Now associating SpamAssassin to Postfix, the mail is interfaced with SpamAssassin
-thanks to the ≪pipe≫program- which analyse and attribute a score to the mail before to
post it again in the Postfix queue. When the mail is analysed and in the Postfix queue,
it can be deliver in mailbox.

3.2 Postfix-ThunderBird associating:

In this part it is question to associate Postfix to ThunderBird.
First it is necessary to add the account on ThunderBird which propose 3 different

kinds of account: mail account, chat account and other account. So we choose to add a
≪Unix Mailspool≫in the ≪other account≫section. Finally, when the account is well added
ThunderBird can get all mails which arrive in the mailbox.

Figure 3.3: ThunderBird getting mail

11

Chapter 4

Method to evaluate spams score
evolution

The purpose of this chapter is to propose a way to analyze the concealing method per-
formance. Let us remind that this study is established using the mail support (cf: 1.3,
Objectives).

Before beginning with more technical details, it is important to notice that the solution
has to work under the Linux environment. This is the only restriction concerning the
solution setup. Indeed the choice of softwares and the manner to realize the solution
under Linux are open.

4.1 General Processes

According to the part 2.2, some software have been chosen: Postfix, Mozilla Thunder-
Bird and Spamassassin.

The idea is first to use Postfix to create a local server mail on our machine to have pos-
sibility to send and receive mails from the Linux terminal. Then, coupling Spamassassin
to Postfix, each mail is associated with a score. So it is possible to get on the one hand
the Spamassassin score of an initial mail and on the other hand the score of its concealed
version associated. So it is question to compare this score, and determine if the initial
mail and its concealed version have similar property relative to Spamassassin.

Of course it is interesting to concealed the initial mail with different parameters (k
values especially) to determine parameters for an optimal local information preservation.

12

On a general manner here is how we will deal with mails:

Figure 4.1: usual process to deliver mail and detect spam via SpamAssassin

On this usual case the mail to deliver is treated by SpamAssassin and deliver either
to normal mailbox or to spams mailbox, depending on results of SpamAssassin analysis.
For this project, a concealing step is inserted before the SpamAssassin treatment:

Figure 4.2: method process used to deliver mail and detect spam via SpamAssassin

Because it is more convenient, mail and its associated SpamAssassin score is always
deliver to the normal mailbox.

Finally, associated Postfix to the client mail ThunderBird is a way to facilitate sending
and reception of mails. Indeed, Postfix is not practical to use from a Linux terminal
because of all commands to enter to send a mail. However, with ThunderBird we can
work with our local server very easily thanks to the simple graphical interface of this
software.

13

4.2 Solution

4.2.1 Evaluation protocols

The aim of this protocol is to get score of an initial mail and score of its conceal version
associated. For that purpose we first have to conceal the mail thanks to the matlab code
developed by the RDC laboratory. Different version of this concealing can be executed
with different parameters, for example k=3,4,5...

Here an example of typical command to conceal a file using the Matlab code developed
by RDC:

p=’/home/chhaya/Bureau/scrip_mail/IC’

addpath(’$p’),

IC_install(’$p’)

inputFormat=’txt’

inputFile=’../input_ex_mails/ex_mail1’

outputFile=’../output_ex_mails/1/concealed_k3_ex_mail1’

k=3

options=IC_options(k,’weak’)

state=IC_state(’random’)

N=inf

output=IC_concealFile(inputFormat,inputFile,outputFile,options,state,N)

The main function is ≪IC concealFile≫but it is necessary to precise all the parameters
used by this one: the path of the work directory, the name of input file (file to conceal)
and output file (name of concealed file), type of input etc... and the k value which refers
to the length of sequences we want to preserve from original mail.

Then the idea is to send the initial mail and its different concealed version thanks to
thunderbird and so get the score of each of them.

Figure 4.3: ThunderBird getting SpamAssassin scores

14

This different steps are a good way to have first results. However, what it is interesting
here it is to have a certain quantity of results which allow some statistical analyze. That
is why it is necessary to automatize this protocol in the purpose to have a lot of results
with a very fast and practical method.

4.2.2 Protocols automation

This subsection exposes the way to automatize protocols show in the last part. In this
purpose bash script have been used.

All the commands could be containing in the same script, but to make it easier to
understand we choose to split script into two scripts: the first one is to automatically
conceal some mails located in a specified repertory and the second one is to send the
mails and its different concealing-version associated.

-Script to conceal mails: This script is the one that involves all the matlab part. Like
all bash script, it begins with the line which precise that it is a bash script:

#! /bin/bash

Then, a loop will be used to conceal a certain number of mails. For example, if we
want to conceal 20 mails, the loop begins at 1 and finishes at 20:

num_mails=20

for ((i = 1; i <= $num_mails; i += 1))

do

Afterwards all the parameters have to be specify in bash variables (cf part 3.1.3).
These parameters are those that setup the Matlab code and those that are used in the
function to conceal a file:

p=’/home/chhaya/Bureau/scrip_mail/IC’

inputFormat=’txt’

inputFile=../input_ex_mails/ex_mail$i

outputFile=../output_ex_mails/$i/concealed_k3_ex_mail$i

k=3

N=inf

Finally, matlab is involved thanks to a bash command, and the function to conceal a
file is executed. Furthermore the loop ended:

/usr/local/matlab/bin/matlab -nosplash -nodesktop -nojvm -r "addpath(’$p’),

IC_install(’$p’), options=IC_options($k,’weak’), state=IC_state(’random’),

output=IC_concealFile(’$inputFormat’,’$inputFile’,’$outputFile’,options,state,$N),

quit"

done

15

Note: The ≪-nosplash≫and ≪-nodesktop≫means that Matlab will not be running graph-
ically. The ≪-nojvm≫option is used to reduce the memory requires because we know that
the java-virtual-machine features are not necessary in our script. And the ≪-r≫means that
we want to run a file into Matlab.

Of course it is possible to execute other concealing with other parameters. For instance
to conceal also the mail in a k=5 version, it is necessary to add this following command
before to end the loop:

outputFile=../output_ex_mails/$i/concealed_k5_ex_mail$i

k=5

/usr/local/matlab/bin/matlab -nosplash -nodesktop -nojvm -r "addpath(’$p’),

IC_install(’$p’), options=IC_options($k,’weak’), state=IC_state(’random’),

output=IC_concealFile(’$inputFormat’,’$inputFile’,’$outputFile’,options,state,$N),

quit"

done

However, for the project it would be interesting to conceal a mail with a k value
included between 3 and 10 (or more). In this purpose it is enough to add a second loop
to manage the k value evolution and modify a bit the outputFile variable:

num_mails=20

for ((i = 1; i <= $num_mails; i += 1))

do

#second loop to manage k evolution:

for ((k = 3; k <= 10; k += 1))

do

p=’/home/chhaya/Bureau/scrip_mail/IC’

inputFormat=’txt’

inputFile=../input_ex_mails/ex_mail$i

k value inserting in the outputFile name

outputFile=../output_ex_mails/$i/concealed_$k\$_ex_mail$i

N=inf

etc...

Finally this final script select all the 20 files containing in the ≪input ex mails≫direc-
tory (ex mail1, ex mail2... ex mail20), and conceal each of this mail in a specific repertory
in ≪output ex mails≫with k values included between 3 and 10.

16

-Script to send mails: This script is used to send mails with Postfix, thanks to bash
command. As the first script, it begins with the line that precises that it is a bash script,
and defines some variables:

#! /bin/bash

srv_ip=127.0.0.1

srv_port=25

recipient=chhaya@localhost

Then, a first loop manages the sending of the 20 initial mails:

num_Mails=20

for ((i = 1; i <= $num_Mails; i += 1))

do

#the content of the mail is the content of the file ex_mail1 etc..

my_message=‘cat input_ex_mails/ex_mail$i‘

subject=‘head -n 1 input_ex_mails/ex_mail$i‘

nc $mail_srv_ip $mail_srv_port << EOF

ehlo mail.script

mail from:<fmaster@test2-rdc.org>

rcpt to:<$recipient>

data

Subject: $subject

$my_message

.

quit

EOF

The two first lines of this part define the body and the header of the mail: the body is
the text containing in the file ex mail1, ex mail2,..., ex mail20 and the header is the first
line of these text files. It assumes that on the first line of each of these 20 initial mails,
there is the subject title of the current mail. Then, the mail server IP, mail server port,
the sender and the recipient are in particular specified.

The ≪data≫means that the writing of the mail itself will follow and this step is done
thanks to the variables ≪subject≫and ≪my message≫. Finally, the dot marks the end of
the writing and then we quit Postfix.

17

Before to end the loop, it is necesary to add a second loop to send the concealed
version of each ex mail1, ex mail2,... and ex mail20:

for ((k = 3; k <= 10; k += 1))

do

my_message=‘cat output_ex_mails/concealed_$k\$_ex_mail$i‘

subject=‘head -n 1 input_ex_mails/ex_mail$i‘

nc $mail_srv_ip $mail_srv_port << EOF

[...etc...]

EOF

#end of the second loop

done

#end of the first loop

done

Note: Only the body of the mail changes because the first line of concealed text file
will not represent the header and it is better to keep a representative header’s mail.

To summarize this script sends one by one an initial mail (ex mail1, ex mail2,... and
ex mail20). When one of this mail is sent, it sends also the concealed version of this one
with a k value included between 3 and 10.

It is then possible to get all of these mail on thunderBird to read their scores. In the
case where mails not arrive in the order they were sending, it is necessary to find a way to
recognize which mail is associated at which value of k. In this purpose it is for example
possible to change a bit the header of each sending message.

Considering the initial mail (non conceal) subject as unchanged it is enough to change
the header of all the concealed mails:

subject=‘head -n 1 input_ex_mails/ex_mail$i‘

is changed to:

subj=‘head -n 1 input_ex_mails/ex_mail$i‘

#concatenation

subject=ksubj

18

Chapter 5

Perfomance evaluation

5.1 SpamAssassin’s score evolution with defaults

ruleset

The first results were done without changing the SpamAssassin’s ruleset.
The following results had been obtained by concealing 20 spams with a value of k

including between 3 and 10:

Concealing version Original k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
Mail 1 16.1 0.2 0.8 2 7.6 7.6 12.6 15.1 12.6
Mail 2 30.9 0.2 0.2 3.5 10.9 17.6 23.2 24.8 25
Mail 3 11.6 0.3 7.5 7.7 2.8 9.5 9.5 11.6 12.3
Mail 4 35.7 3 3 7.1 11.2 12.2 16.2 7 13.7
Mail 5 2.7 0.2 5 6 3.3 2.8 2.7 2.7 2.7
Mail 6 26.2 1.8 5.1 9.1 5.7 17.6 20.7 19.7 21.7
Mail 7 9.4 0.2 0.2 0.2 0.2 3.5 1.6 0.2 3.5
Mail 8 4.2 0.2 0.2 0.2 4.3 1.9 4.2 4.3 4.3
Mail 9 31.2 5.1 1.8 8.7 9.8 13.3 20.9 10.5 25.2
Mail 10 3.4 1.3 0.2 1.3 4.1 0.2 6.9 8 10.7
Mail 11 17.4 3 6.3 6.5 11.3 17.4 13.8 12.9 16.3
Mail 12 33.5 2.8 2.8 8.6 2.8 13.7 15.2 12.7 15.2
Mail 13 6 0.2 0.2 0.2 0.2 1.1 5.1 5.1 2.6
Mail 14 15 1.8 2.4 6.5 2 7.5 12.5 12.5 12.5
Mail 15 20.7 3 3.6 4.8 10.2 8.7 11.1 18.2 14.6
Mail 16 15 1.8 1.8 2.4 8.5 12.5 10.9 12.5 12.5
Mail 17 15.1 0.2 0.2 7 7 10.1 14.1 11.6 15.1
Mail 18 11 1.8 3.2 7.5 7.5 10 10.3 14.8 11.5
Mail 19 15.1 2.8 4.6 7.4 9.5 12.6 15.1 12.6 12.6
Mail 20 19.8 2.8 2.8 4.5 5.9 11.6 15.2 15.2 15.2

Table 5.1: SpamAssassin’s score evolution with k using default SpamAssassin’s ruleset

19

From this results it appears three kinds of behavior. First, there are some mails - as mail 2
an 20 - which have the behaviour expected: the SpamAssassin score increases continually
or stagnates with the value of k. Indeed, this should be logical because bigger is the value
of k better is the conservation of words, and so, better is the detection of forbidden spam
word for SpamAssassin.

Figure 5.1: Mail2 SA’s score evolution with
default ruleset

Figure 5.2: Mail20 SA’s score evolution with
default ruleset

Note: The k=0 refers to the score of original mails (without concealing).

Then, there is a second kind of behavior where the score decreases a bit at a local value
of k, compare to the score at k-1:

Figure 5.3: Mail16 SA’s score evolution with default ruleset

20

This kind of decrease is ≪acceptable≫because it does not significantly change scores.
This decrease depends on single rule which will not be hit at local value of k. Indeed,
depending on how cards were shuffled, and so, how they were rearranged, it is possible to
hit a rule at a k value and not to hit at k+1.

However, there are also some mails which have an unexpected behavior: cases where
decrease of score is too big to just involve only one rule (ex: mail14, mail17), or the
decrease does not appear for a local value of k (ex: mail19), or the score at a k value is
higher than the score of original mail (ex: mail18).

Figure 5.4: Mail14, 17, 18 and 19 SA’s score evolution with default ruleset

This third behavior in particular appears because SpamAssassin does not only use
dictionnary rules containing forbidden words. Indeed, there are also some rules which

21

analyse form and structure of mails, some others are case-sensitive etc...
In this project we want to especially focus on information containing in words, that is

why it is more interesting to only work with dictionary SpamAssassin rules.

5.2 Score evolution with only dictionnary ruleset

In this part it is question to run SpamAssassin with only dictionary ruleset. In this purpose
it is necessary to deal with some SpamAssassin configuration files: /usr/share/spam-
assassin/50 score.cf and /usr/share/spamassassin/72 score.cf. These files define the score
associated to each SpamAssassin rules. So, the idea is to set at 0 all the rules which are
not dictionary like.

Most of the rules are located at /usr/share/spamassassin. It is where we have to check
to know if a rule is dictionnary like or not.

Because of the huge number of rules we do not allwed all the dictionary rules in Spa-
mAssassin. That’s why with this new ruleset some of used mails get very low score and
are not treated in this part.

Concealing version Original k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=20
Mail 1 5,7 -1 -1 -1 0,7 0,7 3,3 3,3 3,3 5,7
Mail 2 8,4 -1 -1 -1 3,3 4,3 5,2 6 6 8,4
Mail 3 9,3 -1 2,9 2,9 2,9 7,2 7,2 9,3 8,7 9,3
Mail 4 6,6 1,6 1,6 4,2 1,6 4,2 4,2 4,2 4,2 4,2
Mail 5 1,5 -1 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5
Mail 6 7,1 0,6 0,6 1,1 0,6 1,1 2,1 2,1 2,1 4,6
Mail 9 8,8 0,6 0,6 0,6 6,3 3,1 3,7 3,7 6,3 8,8
Mail 11 4,3 1,6 1,6 3,4 4,3 4,3 4,3 3,4 4,3 4,3
Mail 12 7,8 1,6 1,6 3,3 1,6 5,8 5,8 5,8 5,8 7,8
Mail 14 5,6 0,6 0,6 0,6 0,6 0,6 3,1 3,1 3,1 5,6
Mail 15 7,6 1,6 1,6 1,6 4,1 1,6 1,6 5,1 5,1 7,6
Mail 16 5,6 0,6 0,6 0,6 3,1 3,1 3,1 3,1 3,1 5,6
Mail 17 5,7 -1 -1 4 4 3,3 5,7 5,7 5,7 5,7
Mail 19 5,8 1,6 1,6 1,6 3,3 3,3 3,3 3,3 3,3 5,8
Mail 20 5,8 1,6 1,6 3,3 3,3 3,3 5,8 5,8 5,8 5,8

Table 5.2: SpamAssassin’s score evolution with k using dictionnary ruleset

22

The first observation is that score are lower in that case, which is logical because
only dictionary rules have been allowed. Furthermore, it appears that for these mails,
the SpamAssassin score is continually increasing/stagnating - or have some acceptable
decreases - until to reach the original score. Indeed, we observe that at k=20, we generally
obtained the original score.

Figure 5.5: Mail19 SA’s score evolution with default ruleset and with only dictionnary
rules

Figure 5.6: Mail14 SA’s score evolution with default ruleset and with only dictionnary
rules

23

It emerges that with this new ruleset using only SpamAssassin dictionary-like rules,
text analysis make possible to detect spams from a certain value of k. For instance in
our case we can approximately set this value a k=8, where the score is not equal to the
original one, but high enough to detect spams. Of course this value is to determine with
a better method, with statistical study for example.

However, we would like to study if it is possible to make this analysis for lower value
of k, at k=3,4 for example. Indeed, lower is the value of k, better is the concealing.

Here we observe that for lower value of k, the SpamAssassin score is very low compared
to the score of original mail. This observation is understandable because of how dictionary
are written in SpamAssassin. These rules are not adapted to the concealing with low
values of k.

5.3 Using of adapted dictionnary ruleset

In this section the idea is to change the dictionary rules used in the previous part into
rules adapted for low value of k. In this purpose we use the property of local information
preservation of the algorithm. For example, if a rule detects the word ≪winner≫we can
adapt it for k=3 with detecting all of these following sequences: ≪win≫, ≪inn≫, ≪nne≫and
≪ner≫. And for k=4: ≪winn≫, ≪inne≫and ≪nner≫.

So, after adapting these rules for k=3, then k=4 and finally k=5 (cf: appendix), we
obtain these following results:

unchanged dictionnary dict. adapted to k=3 dict. adapted to k=4 dict. adapted to k=5
Original Original k=3 Original k=4 Original k=5

Mail 1 5.7 6.6 7.6 6.6 6.6 6.6 6.6
Mail 2 8.4 9.9 9.9 8.4 8.4 8.4 8.4
Mail 3 9.3 9.3 13.9 9.3 9.3 9.3 9.3
Mail 4 6.6 6.6 6.6 6.6 6.6 6.6 6.6
Mail 5 1.5 5.6 13.9 3.9 3.9 1.5 1.5
Mail 6 7.1 7.1 7.1 7.1 7.1 7.1 7.1
Mail 9 8.8 8.8 11 8.8 8.8 8.8 8.8
Mail 11 4.2 6.7 11 6.7 6.7 6.7 6.7
Mail 12 5.7 5.7 5.7 5.7 5.7 5.7 5.7
Mail 14 5.6 5.6 5.6 5.6 5.6 5.6 5.6
Mail 15 7.5 9.2 9.2 7.5 7.5 7.5 7.5
Mail 16 5.6 5.6 6.6 5.6 5.6 5.6 5.6
Mail 17 5.7 5.7 5.7 5.7 5.7 5.7 5.7
Mail 19 5.7 6.2 11.4 5.7 5.7 5.7 5.7
Mail 20 5.7 8.2 11.8 8.2 8.2 8.2 8.2

Table 5.3: SpamAssassin’s score evolution with k using dictionnary ruleset

24

What is important here is the score from the original mail using unchanged dictionary
ruleset compare to score of concealed mails (k=3,4,5) with their adapted dictionaries
rulesets.

From these results we observe that for some mails the original score got with using
unchanged dictionary ruleset is directly reach at k=3,4 and 5 (mails 4, 6, 12, 14 and 17).

Figure 5.7: Mail4 and mail17 SA’s score comparison between unchanged dictionnary rules
(blue) and adpated dictionnary rules for k=3,4,5 (red)

Then there is a second case:

25

Figure 5.8: Mail3 and mail15 SA’s score comparison between unchanged dictionnary rules
(blue) and adpated dictionnary rules for k=3,4,5 (red)

Here the score of the original mail (with unchanged dictionary rules) and those with
k=4,5 (with their adapted dictionary ruleset associated) are the same, but not for k=3
which has a higher score (cf mails 1, 2, 3, 9, 15, 16 and 19). This is due to what we call
≪false negative≫: new words not present in an original mail appear in concealing version.
For example in concealing version with k=3, because of the rearrangment after the card
shuffling step, it is possible to find the sequences ≪win≫, ≪inn≫, ≪nne≫and ≪ner≫which
hit the rule ≪winner≫, while the word ≪winner≫is not present in the original mail. In that
case the original mail do not hit the rule winner among the unchanged dictionary ruleset,
while the concealing version with k=3 hit the associated and adapted rule.

Finally there is a last case where even dictionaries adapted at k=4 and k=5 are higher
than the score get from original mail and unchanged dictionary ruleset:

This happens because of how some rules are adapted. Some of original dictionary-
like rules detect associated words in sentence and not just single word separately. For
example, a rule could be hit with detecting the words ≪millions≫and ≪dollars≫separeted
with less than 20 characters. However, because of the shuffling step - in particular - in
the algorithm and because of k values which are used, we have to use simplier rules: the
≪millions dollars≫rule is hit when it detects ≪millions≫and ≪dollars≫separately, adapted
to k=3,4 and 5 of course (for example with k=3 it is sufficient to detect mil, ill lli etc...
and dol, oll, lla etc...).

This part shows that score given by SpamAssassin -using adapted dictionaries rulesets-
for mail concealing with low value of k are quite similar or equal to the score of the original
mail (given by using only the unchanged dictionary rules).

26

Figure 5.9: Mail1 and mail20 SA’s score comparison between unchanged dictionnary rules
(blue) and adpated dictionnary rules for k=3,4,5 (red)

27

Chapter 6

Conclusion

From the results of this project we show first that the concealing information algorithm
- developed by RDC - preserves well local information. Indeed, in the default ruleset
part we can observe that the SpamAssassin score generally increase with the k value in
concealing text. However, for some certain case results expose an important decrease of
the score for local value of k. This happened because of existence of rules which analyse
in particular form and structure of mails.

This observation is confirmed when we only used dictionary ruleset. In that case we
get better results because for most of our used mails, the score always increase or stagnate
or present very low decrease, until to reach the score of original mail.

However, when only dictionary ruleset is been use, score are too low for low value of
k. But, the fact is that lower the value of k is, better is the concealing. That’s why it is
necessary to use adapted dictionary ruleset.

Finally when adapted dictionary ruleset are used, fine results ermerge. Indeed, in that
case it is possible to directly reach the score of original mail for k=3 or 4.

All of this results tend to show that using the algorithm developed by RDC, it is possible
to detect spams by analysing concealed version of these ones, even if concealing are made
with short information length preservation.

In the future of this project it could be interesting to develop a complete and optimize
dictionnary ruleset in the purpose to confirmed our results using better environment
parameters.

28

Bibliography

[1] AKADIA Information Technology AG. Fighting Spam with SpamAssassin and Post-
fix. http://www.akadia.com/services/postfix spamassassin.html.

[2] Chantra. Postfix and Spamassassin: How to filter spam.
http://www.debuntu.org/postfix-and-spamassassin-how-to-filter-spam/, 2006.

[3] Cyril Jovet. Postfix: la documentation. http://cjovet.free.fr/cours/postfix.htm, 2002.

[4] Lukas Kencl and Martin Loebl. DNA-inspired information concealing: a survey.
Elsevier Computer Science Review, (4), jul 2010.

[5] Lukas Kencl, Martin Loebl, and Jenny Blamey. Processing of data information in a
system. US Patent Application, (US 2010/0205676 A1), aug 2010.

[6] Mozilla. ThunderBird features.
http://www.mozilla.org/en-US/thunderbird/features/.

[7] José Zamora Ponce, Martin Loebl, and Lukas Kencl. Packet content anonymization
by hiding words. In Infocom 2006, 2006.

[8] Postfix. The Postfix Home Page. http://www.postfix.org/.

[9] Research and Development Centre. Projects. http://www.rdc.cz/en/projects/.

[10] Scriptdemo. Run matlab m-file in a shell script.
http://scriptdemo.blogspot.cz/2010/11/run-matlab-m-file-in-shell-script.html, 2010.

[11] SpamAssassin. The Apache SpamAssassin Project. http://spamassassin.apache.org/.

[12] Ubuntu-documentation. PostfixBasicSetupHowto.
https://help.ubuntu.com/community/PostfixBasicSetupHowto/.

29

APPENDICES

30

Appendix A: Script to send mails

------------------------------------ Script to send mails ------------------------------------
#! /bin/bash

#variables :
mail_srv_ip=127.0.0.1
mail_srv_port=25
recipient=chhaya@test2-rdc.org

#we will send « num_Mails » mails
num_Mails=20
for ((i = 1; i <= $num_Mails; i += 1))
do

#****************** sending of original mails
#the content of the mail is the content of the file ex_mail1, ex_mail2, ... or ex_mail_10
my_message=`cat input_ex_mails/ex_mail$i`

#the subject is the first line of the file
subject=`head -n 1 input_ex_mails/ex_mail$i`

#commands lines to send mail :
nc $mail_srv_ip $mail_srv_port << EOF
ehlo mail.script
mail from:<fmaster@test2-rdc.org>
rcpt to:<$recipient>
data
Subject: $subject
$my_message
.
quit
EOF

#****************** sending of concealed version with k included between 3 and 10
for ((k = 3; k <= 10; k += 1))
do
#Msg is the content of concealed3,...,concealed10 located in directory associated to original mail
my_message=`cat output_ex_mails/$i/concealed$k`

#the subject still is the first line of the file containing original mail
subj=`head -n 1 input_ex_mails/ex_mail$i`
#trick to rapidly recognize the version of concealed mail : 3subject, 4subject, …, 10subject
subject=ksubj

nc $mail_srv_ip $mail_srv_port << EOF
ehlo mail.script
mail from:<fmaster@test2-rdc.org>
rcpt to:<$recipient>
data
Subject: $subject
$my_message
.
quit
EOF

done
done

31

Appendix B: Script to conceal mails

#! /bin/bash

#num_mails : number of file (ex_mail1, ex_mail2, ..., ex_mail20)
num_mails=20
for ((i = 1; i <= $num_mails ; i += 1))
do

#we conceal for k included between 3 an 10
for ((k = 3; k <= 10; k += 1))
do

#parameters :
p='/home/chhaya/Bureau/scrip_mail/IC'
inputFormat='txt'
inputFile=../input_ex_mails/ex_mail$i
outputFile=../output_ex_mails/$i/concealed$k
#N=inf means we conceal all text in the file
N=inf

concealing step :
/usr/local/matlab/bin/matlab -nosplash -nodesktop -nojvm -r "addpath('$p'), IC_install('$p'),
options=IC_options($k,'weak'), state=IC_state('random'),
output=IC_concealFile('$inputFormat','$inputFile','$outputFile',options,state,$N), quit"

done
done

32

Appendix C: Dictionnary ruleset used

(Note that all of these rules are located in /usr/share/spamassassin/20 phrases.cf or
/usr/share/spamassassin/72 active.cf)

body DEAR_SOMETHING /\bDear (?:IT\W|Internet|candidate|sirs?|madam|investor|travell?er|car
shopper|web)\b/i
describe DEAR_SOMETHING Contains 'Dear (something)'

body DEAR_FRIEND /^\s*Dear Friend\b/i
describe DEAR_FRIEND Dear Friend? That's not very dear!

body URG_BIZ /urgent.{0,16}
(?:assistance|business|buy|confidential|notice|proposal|reply|request|response)/i
describe URG_BIZ Contains urgent matter

body UNCLAIMED_MONEY
/\bunclaimed\s(?:assets?|accounts?|mon(?:ey|ies)|balance|funds?|prizes?|rewards?|payments?|deposits?)\b/i
describe UNCLAIMED_MONEY People just leave money laying around

body US_DOLLARS_3 /(?:\$|usd).?\d{1,3}[,.]\d{3}[,.]\d{3}(?:[,.]\d\d)?/i
describe US_DOLLARS_3 Mentions millions of $ ($NN,NNN,NNN.NN)

body MILLION_USD /Million\b.{0,40}\b(?:United States? Dollars?|USD)/i
describe MILLION_USD Talks about millions of dollars

body LOTTO_AGENT /\b(?:claim(?:s|ing)?
(?:\sprocessing)?|fiducia\w+|reimbursement|(?:prize|international|intl|foreign|win+ing)(?:[\s,.]+
(?:rem+it+ance|settlement|payment|award|transfer))+|payment|immunity|grants?)\s?
(?:agent|manager|officer|secretary|director|mgr\b)/i
describe LOTTO_AGENT Claims Agent

body DEAR_WINNER /\bdear.{1,20}winner/i

body IMPOTENCE /\b(?:impotence (?:problem|cure|solution)|Premature Ejaculation|erectile dysfunction)/i
describe IMPOTENCE Impotence cure

body BODY_ENHANCEMENT /\b(?:enlarge|increase|grow|lengthen|larger\b|bigger\b|longer\b|thicker\b|\binches\b).
{0,50}\b(?:penis|male organ|pee[-]?pee|dick|sc?hlong|wh?anger|breast(?!\s+cancer))/i
describe BODY_ENHANCEMENT Information on growing body parts

body BODY_ENHANCEMENT2 /\b(?:penis|male organ|pee[-]?pee|dick|sc?hlong|wh?anger|breast(?!\s+cancer)).
{0,50}\b(?:enlarge|increase|grow|lengthen|larger\b|bigger\b|longer\b|thicker\b|\binches\b|size)/i
describe BODY_ENHANCEMENT2 Information on getting larger body parts

body BANG_GUAR /\bguaranteed?\!/i
describe BANG_GUAR Something is emphatically guaranteed

body GUARANTEED_100_PERCENT /100% GUARANTEED/i
describe GUARANTEED_100_PERCENT One hundred percent guaranteed

33

Appendix D:Dictionnary ruleset adapted to k=3

body __DEAR_SOMETHING1 /Dea/i

body __DEAR_SOMETHING2 /ear/i

body __DEAR_SOMETHING3 /sir/i

body __DEAR_SOMETHING4 /ar /i

body __DEAR_SOMETHING5 /r s/i

body __DEAR_SOMETHING6 / si/i

meta DEAR_SOMETHING_C (__DEAR_SOMETHING1 && __DEAR_SOMETHING2 && __DEAR_SOMETHING3 &&

__DEAR_SOMETHING4 && __DEAR_SOMETHING5 && __DEAR_SOMETHING6)

score DEAR_SOMETHING_C 1.7

describe DEAR_SOMETHING_C Contains 'Dear (something)'

body __DEAR_FRIEND1 /fri/i

body __DEAR_FRIEND2 /rie/i

body __DEAR_FRIEND3 /ien/i

body __DEAR_FRIEND4 /end/i

body __DEAR_FRIEND5 /r f/i

body __DEAR_FRIEND6 / fr/i

meta DEAR_FRIEND_C (__DEAR_SOMETHING1 && __DEAR_SOMETHING2 && __DEAR_FRIEND1 &&

__DEAR_FRIEND2 && __DEAR_FRIEND3 && __DEAR_FRIEND4 && __DEAR_SOMETHING4 && __DEAR_FRIEND5 &&

__DEAR_FRIEND6)

score DEAR_FRIEND_C 2.6

describe DEAR_FRIEND_C Contains 'Dear friend'

body __URG_BIZ1 /urg/i

body __URG_BIZ2 /rge/i

body __URG_BIZ3 /gen/i

body __URG_BIZ4 /ent/i

body __URG_BIZ5 /bus/i

body __URG_BIZ6 /usi/i

body __URG_BIZ7 /sin/i

body __URG_BIZ8 /ine/i

body __URG_BIZ9 /nes/i

body __URG_BIZ10 /ess/i

meta URG_BIZ_C (__URG_BIZ1 && __URG_BIZ2 && __URG_BIZ3 && __URG_BIZ4 && __URG_BIZ5 && __URG_BIZ6 &&

__URG_BIZ7 && __URG_BIZ8 && __URG_BIZ9 && __URG_BIZ10)

score URG_BIZ_C 0.9

describe URG_BIZ_C mention urgent business

body __UNCLAIMED_MONEY1 /unc/i

body __UNCLAIMED_MONEY2 /ncl/i

body __UNCLAIMED_MONEY3 /cla/i

body __UNCLAIMED_MONEY4 /lai/i

body __UNCLAIMED_MONEY5 /aim/i

body __UNCLAIMED_MONEY6 /ime/i

body __UNCLAIMED_MONEY7 /med/i

body __UNCLAIMED_MONEY8 /fun/i

body __UNCLAIMED_MONEY9 /und/i

body __UNCLAIMED_MONEY10 /nds/i

body __UNCLAIMED_MONEY11 /ed /i

body __UNCLAIMED_MONEY12 /d f/i

body __UNCLAIMED_MONEY13 / fu/i

meta UNCLAIMED_MONEY_C (__UNCLAIMED_MONEY1 && __UNCLAIMED_MONEY3 &&

__UNCLAIMED_MONEY4 && __UNCLAIMED_MONEY5 && __UNCLAIMED_MONEY6 && __UNCLAIMED_MONEY7 &&

__UNCLAIMED_MONEY8 && __UNCLAIMED_MONEY9 && __UNCLAIMED_MONEY10 && __UNCLAIMED_MONEY11 &&

__UNCLAIMED_MONEY12 && __UNCLAIMED_MONEY13)

score UNCLAIMED_MONEY_C 2.7

describe UNCLAIMED_MONEY_C unclaimed funds

34

body __MILLION1 /mil/i
body __MILLION2 /ill/i
body __MILLION3 /lli/i
body __MILLION4 /lio/i
body __MILLION5 /ion/i
body __DOLLARS1 /dol/i
body __DOLLARS2 /oll/i
body __DOLLARS3 /lla/i
body __DOLLARS4 /lar/i
body __DOLLARS5 /ars/i
body __DOLLARS6 /usd/i
meta MILLION_DOLLARS_C (__MILLION1 && __MILLION2 && __MILLION3 && __MILLION4 && __MILLION5 &&
__DOLLARS1 && __DOLLARS2 && __DOLLARS3 && __DOLLARS4 && __DOLLARS5 ||(__MILLION1 && __MILLION2 &&
__MILLION3 && __MILLION4 && __MILLION5 && __DOLLARS6))
#meta MILLION_DOLLARS_C (__MILLION1 && __MILLION2 && __MILLION3)
score MILLION_DOLLARS_C 2.5
describe MILLION_DOLLARS_C mention millions of dollars

body __US_DOLLARS_31 /(?:\$|usd)/i
body __US_DOLLARS_32 /[,.]?\d{1,2}/i
body __US_DOLLARS_33 /[,.]\d{2}/i
body __US_DOLLARS_34 /\d{3}/i

meta US_DOLLARS_3_C (__US_DOLLARS_31 && __US_DOLLARS_33 && __US_DOLLARS_34)
score US_DOLLARS_3_C 2.5
describe US_DOLLARS_3_C Mentions millions of $ ($NN,NNN,NNN.NN)

body __LOTTO_AGENT1 /cla/i
body __LOTTO_AGENT2 /lai/i
body __LOTTO_AGENT3 /aim/i
body __LOTTO_AGENT4 /ims/i
body __LOTTO_AGENT5 /off/i
body __LOTTO_AGENT6 /ffi/i
body __LOTTO_AGENT7 /fic/i
body __LOTTO_AGENT8 /ice/i
body __LOTTO_AGENT9 /cer/i
body __LOTTO_AGENT16 /ms /i
body __LOTTO_AGENT17 /s o/i
body __LOTTO_AGENT18 / of/i

meta LOTTO_AGENT_C (__LOTTO_AGENT1 && __LOTTO_AGENT2 && __LOTTO_AGENT3 && __LOTTO_AGENT4
&& __LOTTO_AGENT5 && __LOTTO_AGENT6 && __LOTTO_AGENT7 && __LOTTO_AGENT8 && __LOTTO_AGENT9 &&
__LOTTO_AGENT16 && __LOTTO_AGENT17 && __LOTTO_AGENT18)
score LOTTO_AGENT_C 0.5
describe LOTTO_AGENT_C claimes officer

body __LOTTO_AGENT10 /fid/i
body __LOTTO_AGENT11 /idu/i
body __LOTTO_AGENT12 /duc/i
body __LOTTO_AGENT13 /uci/i
body __LOTTO_AGENT14 /cia/i
body __LOTTO_AGENt15 /ial/i

meta LOTTO_AGENTBIS_C (__LOTTO_AGENT1 && __LOTTO_AGENT2 && __LOTTO_AGENT3 && __LOTTO_AGENT4
&& __LOTTO_AGENT10 && __LOTTO_AGENT11 && __LOTTO_AGENT12 && __LOTTO_AGENT13 && __LOTTO_AGENT14 &&
__LOTTO_AGENT15)
score LOTTO_AGENTBIS_C 0.5
describe LOTTO_AGENTBIS_C claims + fiducial

35

body __WINNER1 /Win/i

body __WINNER2 /inn/i

body __WINNER3 /nne/i

body __WINNER4 /ner/i

body __WINNER5 / wi/i

body __WINNER6 /r w/i

meta DEAR_WINNER_C (__DEAR_SOMETHING1 && __DEAR_SOMETHING2 && __DEAR_SOMETHING4 &&

__WINNER1 && __WINNER2 && __WINNER3 && __WINNER4 && __WINNER5 && __WINNER6)

score DEAR_WINNER_C 1

describe DEAR_WINNER_C Dear Winner

body __IMPOTENCE11 /mat/i

body __IMPOTENCE12 /rem/i

body __IMPOTENCE13 /ema/i

body __IMPOTENCE14 /mat/i

body __IMPOTENCE15 /atu/i

body __IMPOTENCE16 /tur/i

body __IMPOTENCE17 /ure/i

body __IMPOTENCE18 /Eja/i

body __IMPOTENCE19 /jac/i

body __IMPOTENCE110 /acu/i

body __IMPOTENCE111 /cul/i

body __IMPOTENCE112 /ula/i

body __IMPOTENCE113 /lat/i

body __IMPOTENCE114 /ati/i

body __IMPOTENCE115 /tio/i

body __IMPOTENCE116 /ion/i

#meta IMPOTENCE_C (__IMPOTENCE11 && __IMPOTENCE12 && __IMPOTENCE13 && __IMPOTENCE14 &&

__IMPOTENCE15 && __IMPOTENCE16 && __IMPOTENCE17 && __IMPOTENCE18 && #__IMPOTENCE19 && __IMPOTENCE110 &&

__IMPOTENCE111 && __IMPOTENCE112 && __IMPOTENCE113 && __IMPOTENCE114 && __IMPOTENCE115 && __IMPOTENCE116)

#meta IMPOTENCE_C (__IMPOTENCE11 && __IMPOTENCE12 && __IMPOTENCE13 && __IMPOTENCE14 &&

__IMPOTENCE15 && __IMPOTENCE16 && __IMPOTENCE17)

meta IMPOTENCE_C (__IMPOTENCE18 && __IMPOTENCE19 && __IMPOTENCE110 && __IMPOTENCE111 &&

__IMPOTENCE112 && __IMPOTENCE113 && __IMPOTENCE115 && __IMPOTENCE116)

score IMPOTENCE_C 2.1

describe IMPOTENCE_C premature ejaculation

body __BODY_ENHANCEMENT11 /enl/i

body __BODY_ENHANCEMENT12 /nla/i

body __BODY_ENHANCEMENT13 /lar/i

body __BODY_ENHANCEMENT14 /arg/i

body __BODY_ENHANCEMENT5 /rge/i

body __BODY_ENHANCEMENT6 /pen/i

body __BODY_ENHANCEMENT7 /eni/i

body __BODY_ENHANCEMENT8 /nis/i

meta BODY_ENHANCEMENT_C (__BODY_ENHANCEMENT11 && __BODY_ENHANCEMENT12 &&

__BODY_ENHANCEMENT13 && __BODY_ENHANCEMENT14 && __BODY_ENHANCEMENT5 && __BODY_ENHANCEMENT6 &&

__BODY_ENHANCEMENT7 && __BODY_ENHANCEMENT8)

score BODY_ENHANCEMENT_C 1.6

describe BODY_ENHANCEMENT_C enlarge penis

body __BODY_ENHANCEMENT9 /siz/i

body __BODY_ENHANCEMENT10 /ize/i

meta BODY_ENHANCEMENT2_C (__BODY_ENHANCEMENT9 && __BODY_ENHANCEMENT10 &&

__BODY_ENHANCEMENT6 && __BODY_ENHANCEMENT7 && __BODY_ENHANCEMENT8)

score BODY_ENHANCEMENT2_C 1.5

describe BODY_ENHANCEMENT2_C penis size

36

body __GUARANTEED_100_PERCENT1 /100/i

body __GUARANTEED_100_PERCENT2 /00%/i

#body __GUARANTEED_100_PERCENTc3 /GUA/i

body __GUARANTEED_100_PERCENT4 /UAR/i

body __GUARANTEED_100_PERCENT5 /ARA/i

body __GUARANTEED_100_PERCENT6 /RAN/i

body __GUARANTEED_100_PERCENT7 /ANT/i

body __GUARANTEED_100_PERCENT8 /NTE/i

body __GUARANTEED_100_PERCENT9 /TEE/i

body __GUARANTEED_100_PERCENT10 /EED/i

body __GUARANTEED_100_PERCENT3 /gua/i

meta GUARANTEED_100_PERCENT_C (__GUARANTEED_100_PERCENT1 && __GUARANTEED_100_PERCENT2 &&

__GUARANTEED_100_PERCENT3 && __GUARANTEED_100_PERCENT4 && __GUARANTEED_100_PERCENT5 &&

__GUARANTEED_100_PERCENT6 && __GUARANTEED_100_PERCENT7 && __GUARANTEED_100_PERCENT8 &&

__GUARANTEED_100_PERCENT9 && __GUARANTEED_100_PERCENT10)

score GUARANTEED_100_PERCENT_C 2.7

describe GUARANTEED_100_PERCENT_C One hundred percent guaranteed

meta BANG_GUAR_C (__GUARANTEED_100_PERCENT3 && __GUARANTEED_100_PERCENT4 &&

__GUARANTEED_100_PERCENT5 && __GUARANTEED_100_PERCENT6 && #__GUARANTEED_100_PERCENT7 &&

__GUARANTEED_100_PERCENT8 && __GUARANTEED_100_PERCENT9 && __GUARANTEED_100_PERCENT10)

score BANG_GUAR_C 2.4

describe BANG_GUAR_C Something is emphatically guaranteed

37

